
c LIST

Copy No. J oi_ 3i-^_cys.

ESD-TR-77-137 MTR-3349

GEOGRAPHIC DATA DISPLAY IMPLEMENTATION

JUNE 1977

Prepared for

DEPUTY FOR DEVELOPMENT PLAN
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Hanscom Air Force Base, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project No. 7090
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-77-C-0001

AD/io^2

When U.S. Government drawings, specifications,

or other data are used for any purpose other

than a definitely related government procurement

operation, the government thereby incurs no

responsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or othe-wise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

)NALD E. BYRNE, JHI Colon/11, USAF
Director, Advanced Planning
Deputy for Development Plan

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

ESD-TR-77-137
2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

GEOGRAPHIC DATA DISPLAY IMPLEMENTATION

5. TYPE OF REPORT ft PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

MTR-3349
7. AUTHORfs)

D. H. LEHMAN

8. CONTRACT OR GRANT NUMBER!-*;

F19628-77-C-0001

9- PERFORMING ORGANIZATION NAME AND ADDRESS

The MITRE Corporation
Box 208
Bedford, MA Q173Q

10. PROGRAM ELEMENT, PROJECT, TASK
AREA « WORK UNIT NUMBERS

Project No. 7090

11. CONTROLLING OFFICE NAME AND ADDRESS
Deputy for Development Plan
Electronic Systems Division (AFSC)
Hanscom Air Force Base, MA 01731

12. REPORT DATE

JUNE 1977
13. NUMBER OF PAGES

226
14. MONITORING AGENCY NAME & ADDRESSCM dillerent Irnm Controlling Ollice) 15. SECURITY CLASS, (ol this report)

UNCLASSIFIED

15a. DEC LASSIFI CATION'DOWN GRADING
SCHEDULE

16. DISTRIBUTION ST ATEMEN T (ol this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ot the abstract entered in Block 20, II dillerent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and identity by block number)

COMPUTER SOFTWARE
COMPUTER GRAPHICS
DATA BASE

DISTRIBUTED PROCESSING
GEOGRAPHY

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

To support automated displays of positional intelligence data, detailed geographic
background displays are needed over a wide range of scales. The Geographic Data
Display System (GDDS) displays geographic data on a raster scan display and allows
the user to zoom and translate around a map of Central Europe. As the user zooms
in on an area, the area is displayed in greater detail, and geographic features such

DD (J
FORM

AN 73 1473 EDITION OF 1 NOV 65 is OBSOLETE
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PACEfWhen Data Entered)

20. ABSTRACT (Concluded)

as rivers, roads, etc. , are added to the display. This report outlines the
capabilities and design of the GDDS, describes the implementation, and documents
the programs.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEflfhen Data Entered)

ACKNOWLEDGMENTS

This report has been prepared by The MITRE Corporation under
Project No. 7090. The contract is sponsored by the Electronic Systems
Division, Air Force Systems Command, Hanscom Air Force Base,
Massachusetts.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

LIST OF TABLES

SECTION I INTRODUCTION

SECTION II GEOGRAPHIC DATA DISPLAY SYSTEM

INTRODUCTION
OPERATOR CONTROLS
TRANSLATE AND ZOOM
Translation
Zoom

FEATURE SELECTION
Format
Macro Expansion
Menu Operation

OPERATING MODES
Automatic
Normal
Special

SYSTEM USE

SECTION III GEOGRAPHIC DATA DISPLAY DESIGN

INTRODUCTION
DATA BASE PREPARATION
REQUIRED USER FUNCTIONS

Scaling and Levels of Detail
Translating and Neighborhoods

DATA STRUCTURES
Detail Levels and Blocks
Translation with Blocks
Zooming with Blocks

DATA MANAGEMENT
Data Organization
Index Organization
Retrieval Process

PARALLEL DATA BASES

SECTION IV IMPLEMENTATION TOOLS

INTRODUCTION
SYSTEM ARCHITECTURE
Design Philosophy

Page

5

6

7

10

10
10
10
13
13
16
16
16
18
19
19
19
20
20

22

22
22
24
26
26
28
28
30
31
31
34
34
34
38

41

41
41
41

TABLE OF CONTENTS (concluded)

SECTION V

APPENDIX I

APPENDIX II

APPENDIX III

APPENDIX IV

APPENDIX V

APPENDIX VI

MESSAGE PROCESSOR
GRAPHICS PACKAGE

Instancing
Coordinate Systems
Use by GDD
Implementation

FILE MANAGEMENT PACKAGE

IMPLEMENTATION DESIGN OF THE GDD

INTRODUCTION
MODULE COMMUNICATION
MENU MODULE
MENUUP
MESLCT

FUNCTION REQUEST HANDLER
Zoom
Translate

DATA EXCEPTION MODULE
Module Entry
Automatic Mode Zoom
Normal Mode Zoom
Special
Translation

DATA BASE MANAGEMENT
MDISP
RPCOL

MODE
INITIALIZATION

DATA BASE CONSTRUCTION PROGRAMS AND PROCEDURES

SYSTEM INITIALIZATION PROGRAM

GDD OPERATING PROCEDURES

COMMONS

PROGRAM SUMMARY SHEETS

PROGRAM LISTINGS

Page

43
44
45
45
46
48
48

49

49
49
51
53
53
57
57
59
59
61
61
61
62
62
63
63
65
65
67

68

79

102

104

123

169

LIST OF ILLUSTRATIONS

Figure Page

1 Display and Controls of the Geographic Data
Display System 11

2 Layout of GDD Function Key Pad 12
3 Translation Before and After Sequence 14
4 Zoom Before and After Sequence 15
5 Menu Format 17
6 Detail Ranking Algorithm 25
7 Loss of Context Due to Lack of Detail 2 7
8 Translation with Neighborhoods 29
9 Translation with Blocks and Neighborhoods 32

10 Zooming with Blocks and Detail Levels 33
11 Blocking and Ordering a Detail Level 35
12 Ordering and Format of an Index for a Detail Level 36
13 Data Base Retrieval Process 37
14 Parallel Data Base Selection 39
15 Schematic of 7090 Computer Facility 42
16 Inclusion of One Image into Another 47
17 Internal Communications of the Six GDD Modules 50
18 Flowchart of MENUUP of Menu Module 54
19 Flowchart of MESLCT of Menu Module 55
20 Flowchart of Function Request Handler 58
21 Flowchart of Data Exception Module 60
22 Flowchart of MDISP Entry into Data

Management Module 64
23 Flowchart of RPCOL Entry into Data

Management Module 66
24 Generated Entry and Exit Points for Crossed Blocks 70
25 Assignment of Single-Point Chains 70
26 Example Teletype Input for IMAGE Program 76
27 IMAGE Program Output Restating Input Parameters 77
28 IMAGE Output Showing Number of Chains and Points

per Map Block, Drum Block Address and Byte
Entry in Drum Block for Each Block of Data 77

29 Output of IMAGE Program Showing Index for
Column of Data 78

LIST OF TABLES

Table

I Module Subrou
II Card 1 ̂1

III Card 1 H
IV Card i '3
V Card 1 '4

VI Card i f5
VII Card i '6

VIII Card 1 '7
IX Card i /8
X Card i f9

XI Card i ̂ 10
XII Card i Hi

XIII Card i fl2
XIV Card 1 fl3
XV Card i ̂ 14

XVI Card i ̂ 15
XVII Card i fl6
XVIII Card i ̂ 17
XIX Card ^ fl8
XX C0MMU1 * COMMON

XXI CURSTi ̂ COMMON
XXII DATSTJ ̂ COMMON

XXIII ERASE COMMON
XXIV COLOR' 5 COMMON
XXV DATBAJ ; COMMON
XXVI FAC C()MMON
XXVII FILE (COMMON

XXVIII MACRO COMMON
XXIX MAP C()MMON
XXX MENCOI 1 COMMON

XXXI MNUTIi ̂ COMMON
XXXII TREES COMMON

Page

52
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
107
108
110
112
113
114
116
117
118
119
120
121
122

SECTION I

INTRODUCTION

Geographic Data Display (GDD) is a tool developed by Project

7090 to aid the real-time display of operational and intelligence

information. This data is readily available in Command, Control

and Communication Centers, but it is available in such copious

quantities that it must be summarized and properly displayed to be

useful. This "properly displayed" is the motivation behind the GDD.

Major subsets of operational and intelligence data are posi-

tional in nature, and therefore any method of representing the data

for quick reference by an operator requires a map. For a more

detailed analysis the actual raw data of latitude, longitude points

must also be available to an operator, but obviously an operator

can more rapidly assimilate information from a graphics image than

from a list of data points.

One intention of Project 7090 is to develop techniques for

displaying operations/intelligence information over a wide range of

granularity — from data summarized over a large area of several hundred

miles to individual reports displayed over only ten square miles. To

support this summarization task, maps are required that adequately re-

present the geography at any needed scale. The Geographic Data Display

System has the needed capability to project detailed maps as back-

ground for information displays over a wide range of scales.

The specific problem addressed by the GDD is, then, the

manipulation of geographic data to provide adequate resolution of

geographic features over a wide range of scales. If more data is

displayed than can be absorbed by the resolution of the display

device, the features will appear fuzzy. If too little data is used,

the geography will appear sparse and angular, and the viewer may

lose any sense of context. Since the purpose of the GDD is to

allow a viewer to zoom in and out on a displayed map and still

maintain clear, detailed geographic feature representation, an

ability to dynamically vary the amount of data used for the display

had to be developed. The solution to this problem used by the

GDD was levels of detail.

A level of detail of a geographic feature is a map containing

a fixed amount of data representing that feature. It can only be

displayed over a relatively small range of scale before it gives

fuzzy or angular displays. For any feature several levels of

detail are defined; each successive level contains more data

than the last,and each level is displayed only over its defined

scale range. When the user zooms out of the scale range of a

level of detail, the display is defined from the next level of

detail. Such a scheme solves the problem neatly and puts no limit ,

on the scales that can be displayed by the system.

To make the GDD even more flexible, not only is the amount

of data displayed variable, but the actual geographic features

displayed can be varied by the user to tailor the display to his

needs. There is a feature library in the system containing coast

lines, political boundaries, rivers, roads, etc. The user can

select from this library the features he wants displayed for his

particular application. Each individual feature is divided into

levels of detail, allowing the detail of features to be adjusted

independently of one another.

Another paper, ESD-TR-77-360, "Geographic Data Base Development,"

thoroughly describes the data base preparation process and programs.

This paper, then, is intended primarily as implementation level

documentation for the GDD. It will, however, give the reader a

broad overview of the system.

The first section simply describes the GDD - how the user

sees it and what it does for him. The next section is an over-

view of the conceptual design which begins by establishing the

user needs and describing the data bases the system will use. The

section then develops the design of the GDD around these givens

and concludes with the data structures and data management tech-

niques used in implementation. Section IV covers the system

architecture and software tools used to implement the GDD. The

final section provides top level documentation for each of the six

modules of the GDD. The appendices contain additional, more detailed

documentation of the programs, variables and operating procedures.

The appendices assume a working knowledge of the 7090 computer

facility's operating system.

SECTION II

GEOGRAPHIC DATA DISPLAY SYSTEM

INTRODUCTION

To the user the GDD is a TV screen on which maps are pro-

jected as background for operation and intelligence information

displays. Using a trackball and function keyboard the user can

invoke a few basic functions for manipulating the display and

tailoring the display to his needs. In this section, these functions

and other capabilities of the GDD are described as they appear to

the user.

OPERATOR CONTROLS

To operate the GDD, the user sits in front of a TV screen with

a function keyboard and a trackball positioned near by. Figure 1

shows an operator working with the GDD.

The function keyboard diagrammed in Figure 2 has twelve buttons,

of which eight are currently used. Three of these are for zoom

and translate requests, two for feature selection from a menu and

three for changing the modes of the system. These functions are

described below.

The trackball controls the position of a cursor on the TV screen.

The cursor is used to select a point on the display for use in

performing a translate, zoom or feature selection function.

TRANSLATE AND ZOOM

The portion of the world displayed on the TV screen can be

fully described by its center point and extent*. The user can

*Extent is defined as the inverse of scale. The GDD was implemented
using variables representing extent. To be consistent, extent is
used throughout the document.

10

Figure 1. Display and Controls of the Geographic Data Display System

11

01*

ZOOM

OUT

ZOOM

IN

TRANS-

LATE

MENU SELECT

AUTOMATIC NORMAL SPECIAL

Figure 2 LAYOUT OF GDD FUNCTION KEY PAD

12

manipulate the display he sees by manipulating the center point and

extent with translate and zoom functions.

Translation

Translation changes the center point of the displayed map. The

user selects a point on the display screen by positioning the

trackball-controlled cursor over the desired point. When the

translate function key is hit, the GDD moves the point designated

by the cursor to the center of the display screen. The photographs

in Figure 3 show a before and after sequence of a translate.

Note that part of the map that was not in the original display has

been brought on from off the screen. In essence, the user is

viewing the map through a restricted window. As the user translates,

he moves the window around the map to view a different area. If

the user translates out of the mapped region, he will see a boundary

line marking the edge of the map. Beyond this edge the map will be

blank.

Zoom

With the zoom function the user can alter the extent of the

area displayed around the center point, effectively changing the

size of the restricted window in the analogy used above. The

operator uses the trackball to position the cursor over the point

he wishes to remain stationary during the zoom. The user hits

either the zoom in or zoom out function button causing the distance

between the selected point and all other points in the display

to be either multiplied or divided by the magnification factor

(normally 1.5). The result is a change of extent around the

cursor as seen in Figure 4, another before and after sequence.

This is the simplest zoom that is done by the system. In

Section I we spoke of displaying maps of adequate detail at all

scales. This adjustment of detail is performed automatically by

the GDD whenever a zoom is requested by the system. Thus, after

13

Figure 3. Translation Before and After Sequence

14

Figure 4. Zoom Before and After Sequence

15

the zoom described above is done, the system determines if there

is too much or too little data displayed on the screen for the

current extent value and adjusts the amount of data accordingly.

FEATURE SELECTION

In the introduction we also spoke of the operator having

the ability to tailor the display to his own needs. By this we

mean that the operator controls what geographic features are dis-

played on the screen. These features include political boundaries,

roads, rivers, railroads, etc. In order to have an effective

display, the user must be able to turn these features on and off.

In the GDD this is done with a menu.

Format

The menu format is shown in Figure 5 and is displayed on the

screen when the "menu" function button is pressed. The menu

presents the user with a list of features available for display;

those that are currently displayed contain a number in the ON

column indicating the amount of detail with which the feature is

currently displayed relative to the total amount of data available

for that feature. A low number indicates little detail, a higher

number more detail. The number in parenthesis directly opposite

the features in the list indicates the maximum amount of detail

available. The last line on the screen indicates which of three

operating modes the system is in. These modes are discussed in

the next subsection.

Macro Expansion

In the system there is a macro expansion capability for feature

selection. A feature in the menu list may represent several feature

data bases. For example, the list could contain the word "boundaries,"

which, when selected, would be expanded to represent the two data

bases - coastline and political boundaries, each of which could

16

MAP FEATURE SELECTION

FEATURE (MAX) ON OFF

MAP (3) 2

RIVERS (2) 1

ROADS (2)

NORMAL MODE MAKE SELECTION

*

Figure 5 MENU FORMAT

17

also appear separately in the list.

Menu Operation

The user picks a feature for display or deletion by positioning

the cursor opposite the proper feature and beneath either the ON

or OFF column and hitting the "select" function key. The system will

immediately respond with an acknowledgement. The response could

be an error message displayed at the bottom of the screen. Possible

error conditions are the cursor is not positioned opposite one of

the features or beneath either of the functions or a feature is

selected for deletion which is not currently displayed. If the

selection request is allowed, a message is displayed at the bottom

of the screen and either an X is displayed in the OFF column if

a delete was requested or a number representing the relative amount

of detail with which the feature will be displayed is inserted

in the ON column. The amount of detail with which a selected

feature will be displayed is determined by the system as a function

of the current extent of the display window.

Before any of the selected data bases are displayed or

erased, the user can correct any of his choices. If an operator

has selected a feature for display and then decides he no longer

wants it displayed, he can select that feature again in the OFF

column and the effect of the previous selection in the ON column

is nullified. The same is true if the user has inadvertently

chosen to delete a feature. Selecting it again in the ON column

will produce no effect on the display of that feature.

Once the user is satisfied with his selection of features, he

hits the "menu" function key again. This enters the user's choices

and erases the menu from the display screen. Those features de-

leted by the user will disappear from the screen, followed by the

addition of any newly selected features.

18

OPERATING MODES

The GDD will operate in three different modes - automatic,

normal and special. These modes control the degree to which the

user can adjust the amount of data on the screen. Only feature

selection and levels of detail are effected by the mode change.

Mode changes are caused by hitting one of the three function

buttons shown at the bottom of Figure 2. The system is initialized

in automatic mode and remains in that mode until a mode key is

pressed. The system stays in a mode until another mode is selected

by the user.

Automatic

Automatic mode allows the user the least flexibility of the

three modes. The user has no control over what features are

displayed. The user can simply zoom and translate. As he zooms

in (or out), features are displayed (or deleted) as predetermined

extent thresholds for each feature are crossed. The amount of

data for each displayed feature is also automatically adjusted

to the extent. If a menu is requested, it is displayed, but only

as a status report on what features are currently displayed; no

feature selection is allowed in automatic mode.

Normal

Normal operation allows the user to select and delete features.

When the user shifts from automatic or special mode to normal

mode, the features that are currently displayed become the selected

features. By using the menu to display or delete features, the

user can change this list of selected features to adapt the display

to his task. As in automatic mode, the amount of detail shown for

a particular feature is a function only of the extent of the

displayed map. Once a feature is selected for display, it will

not disappear from the screen until the mode is changed; it is

19

deleted by a menu request or the extent thresholds for that feature

are exceeded. In the latter case, the feature will be redisplayed

as soon as the extent is again within the maximum and minimum

thresholds for the feature.

Special

Special mode is similar to normal mode in all but one respect.

It locks the displayed features at their current levels of detail.

No matter how much zooming is done, the amount of data displayed

remains constant. If a feature is selected via the menu in special

mode, the feature is displayed with detail appropriate to the current

extent. However, as long as the system remains in special mode,

no amount of zooming will alter the amount of detail displayed.

If the user shifts from special to either automatic or

normal, detail levels of the currently displayed features are

adjusted on the next zoom or translate request. In the case of

a shift to automatic or normal modes, entire data bases may be

deleted if the extent after the zoom is not within the predetermined

thresholds for that feature.

SYSTEM USE

Fine, the user can control the system and look all around a

map at various scales. How is the map useful to him?

The answer to this question is that the GDD is not the only

process running on the computer as the operator zooms and translates.

When the user requests a zoom or a translate, the GDD responds by

relocating or scaling the map, but the GDD is not the only process

to receive these function requests. Processes controlling fore-

ground displays of, for example, radar or intelligence data, also

translate or scale the displayed foreground data under their control.

These processes, running independently of the GDD and requiring

only the center point and scale of the displayed area, are now

20

being developed under Project 7090. This task of 7090 is investi-

gating methods of summarizing and displaying the large volume of
3

operational and intelligence data available to a C operator.

The map provides a background on which large quantities of data

can be summarized and rapidly assimilated by a viewer. The

location of the data summarized on the map is, of course, controlled

by the center point chosen by the operator. The degree of summar-

ization will be a function of extent. As the operator zooms in

on an area, the foreground displays will provide more specific

information.

21

SECTION III

GEOGRAPHIC DATA DISPLAY DESIGN

INTRODUCTION

This section is intended to be a brief overview of the

Geographic Data Display System design. The first subsection

describes the initial geographic data base and how it was prepared

for use by the GDD. With the data base as a given, the needed

user functions are specified in the next subsection. The following

two subsections discuss how the data base must be structured and

managed to implement the user functions.

DATA BASE PREPARATION

The original data base used for this project was World Data

Bank I obtained through the National Technical Information Service.

The data base contains approximately 80,000 latitude/longitude

points in both degrees and radians, outlining the coastline and

political boundaries of the world. For data management purposes

the data base is divided into entities called chains. A chain

is defined as a set of points which, when connected in order,

form part of a geographic boundary. The chains vary in size

from one point for small islands to several hundred for an

intricate portion of coastline, such as the Norwegian fiords.

The chain format is the standard format for all geographic

features in the GDD feature library which have linear characteristics,

22

The data massaging process described below was applied to all

data bases used by the GDD, but the coastlines and boundaries of

World Data Bank I are used as an example.

Only a short outline of the massaging given to World Data

Bank I and the other data bases will be presented. ESD-TR-76-360,

"Geographic Data Base Development," discusses the entire data base

preparation problem and documents the programs needed for this

process.

First, to obtain a data base of more manageable size, a subset

of World Data Bank I was made consisting of those points falling

within the region bounded by the points (63 N,033 W), (68 N,039 E) ,

(30 N.012 W), (32 N.021 E). This is (roughly) Europe from Iceland

to Moscow, Algeria to North Cape, Norway. All discussions that

follow deal only with this European subset consisting of approx-

imately 8200 points.

These latitude/longitude points of Europe were projected

into an X,Y plane to form a map. The projection used was a Secant

Conic with two standard parallels to minimize distortion. Scale

error is 0% along the standard parallels (57 N and 41 N) and a

maximum of 1% on the extremes of the map.

Once the subset was established and projected, the individual

points were ranked according to their importance to map detail.

This was necessary since displaying all 8200 points simultaneously

results in wide fuzzy boundary lines on the display screen. At

a scale which enables the entire region of the map to be seen,

many points in the data base are too close to be resolved by

the display into distinguishable points causing fuzziness. A

program was written using an algorithm developed by the Harvard

Laboratory for Geographic Display and Spatial Analysis which ranks

the points according to their importance relative to a visible

feature. Very simply, the trend line length between the endpoints

23

of a chain in the data base is calculated. The distance of each

point in the chain from the trend line is calculated and compared

to a set of tolerances. Those points within a small tolerance

of the trend line itself are considered least important since

they describe a very small feature and are assigned to a low

rank or detail level. The points falling farthest away from

the trend line are considered the most important as they describe

a gross geographic feature and are assigned to a high detail level.

Figure 6 shows the process graphically. ESD-TR-76-360 describes

the algorithm in detail.

A ranking of points into these detail levels provides the

capability of displaying maps while controlling the detail and

the resolution by varying the detail level of the points displayed.

The detail level chosen controls the number of points displayed.

For displaying large areas only important points are used; if a small

area is displayed points of a lesser rank are also displayed. Thus,

as the scale changes, approximately the same number of points are

always displayed on the screen, but the points represent either

more detail if a small area is being viewed, or less detail and more

boundaries if a larger area is being viewed.

REQUIRED USER FUNCTIONS

The map display system had to have four functions - location,

translate, zoom, and feature selection. Location is defining

what part of the world is displayed. At the present this is an

unimplemented function; the map is located in central Europe and

cannot be varied. The zoom had to provide adequate detail in the

geography for a wide continuous range of extent values. Further-

more, all three functions had to perform quickly to be useful in

a real-time application. For the moment consider only zoom and

translation of a single data base; speed and feature selection from

24

NOTE : —

DISTANCE FROM THE TREND LINE DETERMINES IMPORTANCE

OF A POINT TO DETAIL. POINTS 2 AND 9 ARE LEAST

IMPORTANT AS THEY DEVIATE LEAST FROM THE TREND LINE
POINT 7 IS THE MOST IMPORTANT SINCE IT IS FARTHEST

AWAY AND THUS DEFINES A LARGER FEATURE THAN THE

OTHER POINTS.

Figure 6 DETAIL RANKING ALGORITHM

25

the feature library will be covered in a later subsection as general-

izations of how a single data base works.

Scaling and Levels of Detail

Any good graphic display system has a scaling function enabling

the user to magnify his displayed image. Consider the effect of

this standard system on a map covering a large area and therefore

containing only important points. As the map is magnified less

area is seen, but boundaries become more angular and accuracy of

representation is lost as the distance on the screen between

points becomes greater and greater: curves would become sharp

angles. Figure 7 shows a portion of Scandanavia after several

zooms without the addition of detail. To maintain a recognizable

image of Scandanavia a dynamic system would have to obtain more

points from the data base as the map was magnified. Conversely

it would have to delete points as the map was scaled in the opposite

direction.

A compromise between the standard graphics system and a truly

dynamic system was developed. In the GDD simple magnification is

used over a specified extent range. When scaling is requested

outside the range specified, the displayed map is replaced by a new

map containing points of a higher or lower detail level, whichever

is appropriate to the zoom direction. This new map is then scaled

by the user until an extent threshold is crossed causing a new

map composed of a new detail level to be displayed. Such a system

provides resolvable detail at all practical magnifications since

a map composed of points of a given detail level is only displayed

over the range of magnification which it can support with adequate

resolution.

Translating and Neighborhoods

The other primary design consideration was a translate function.

This feature enables the user to move any point of the map currently

26

Figure 7. Loss of Context Due to Lack of Detail

27

visible to the center of the display screen. This, too, is a

standard graphics tool, but the map posed an interesting problem.

If a point on the extreme edge of the screen is translated to the

center, half of the screen is left blank, unless points that are

not in the current display are kept in memory, ready for instant

display when a translate is done. This was impossible because of

a memory size limitation. The entire map cannot be kept in

instant readiness without using a considerable amount of memory.

Again a compromise was reached.

Given a center point of the map and an extent range, a

neighborhood around the center point can be defined larger than

the maximum allowed extent such that the entire neighborhood will

never be displayed as long as the extent range is not exceeded.

The neighborhood is the shaded area in Figure 8a. As the map is

translated within that neighborhood, undisplayed points in memory

are displayed, and displayed points are dropped from the screen

as shown in part b of Figure 8. When a user translates too close

to an edge of a neighborhood, data no longer displayed and farthest

from the displayed map is erased and new data bordering the dis-

played edge is brought in from secondary storage redefining the

neighborhood as shown in Figure 8c. This system allows the user

to have an instant translate without the inconvenience of a

momentary blank screen.

DATA STRUCTURES

With the design considerations outlined above, the problem

of building a geographic display system to give the needed fast

responses reduced to a data structure and data management problem.

Detail Levels and Blocks

To implement the zoom function three complete maps of different

levels of detail were constructed. The first map contains only

28

MAP REGION

a) DISPLAY WINDOW AND NEIGHBORHOOD

b' DISPLAY WINDOW AND NEIGHBORHOOD AFTER

IMMEDIATE RESPONSE TO TRANSLATE

c) DISPLAY WINDOW AND NEIGHBORHOOD AFTER

NEIGHBORHOOD HAS BEEN REDEFINED

Figure 8 TRANSLATION WITH NEIGHBORHOODS

29

the 800 most important points of Europe in World Data Bank I for

use with the largest extent, displaying the entire European map

which is approximately 2200 miles across. The 800 point figure is

a practical restriction imposed by the memory requirements of the

graphics system used (this graphics system, PALLET, is described

in the next section). The second and third maps contain 2300

and the entire 8200 points, respectively. It is neither possible

nor desirable to display the entire map with these last two

large data bases. Only part of these data bases can be resident

in core at any one time. That part not in the current neighborhood

must reside in secondary storage until the viewing window is

translated near to the edge of the data in memory at which time

the neighborhood is redefined.

A structure was imposed on each of the three maps to enable a

neighborhood around a center point to be selected. Each map was

divided into square blocks. The first map into 9 blocks, the

second into 81 and the third into 729. A block in the first data

base was divided into 9 blocks in the second data base, and a

block in the second was represented by another 9 in the third.

Translation with Blocks

With such a structure it is only necessary to keep a maximum

of 16 blocks around the center point of the display in memory.

As the center point is translated, the required 16 blocks change

but not all at once. The extent ranges over which each level is

displayed prevent the user from seeing more than a three-block

width or height at any one time. Thus, there is enough undisplayed

data to fill most of the screen when a translate to an extreme

boundary is done. (If magnification is such that less than a three-

block width is visible, there will always be enough data to fill

the screen when a translate is requested.) When a neighborhood

needs to be redefined, blocks not displayed can be erased and new

30

blocks read in from secondary storage. Figure 9 shows this process.

This type of structure allows the viewer an immediate translate

capability; the viewer should not be aware that a data exception

has occurred necessitating references to secondary storage.

Zooming with Blocks

The zoom capability is also instantaneous, with one exception,

whenever a zoom is requested, the data currently displayed is mag-

nified accordingly. If a scale threshold has been crossed requiring

a new detail level an entire neighborhood of 16 blocks must be read

from secondary storage. So, though the operator sees an instan-

taneous zoom, there is a delay before he sees a new level of detail.

His operation is, however, not interrupted at any point.

Figure 10 shows the zoom function implemented with blocks and

neighborhoods. In the diagram it can be seen that a new neighbor-

hood is defined from the next detail level when a threshold is

crossed. The blocks of the new higher detail level cover a smaller

geographic area than the previous level but contain at least as

much data.

DATA MANAGEMENT

We have now developed a data structure that provides the

capabilities and flexibility we need. The question now becomes

how to manage a data base with such a structure to provide a user

with fast response when a translate or zoom is requested. Since

it is impossible to give an instantaneous response when a data

exception occurs on a translate or zoom, the user is given an

instantaneous partial response by simply magnifying or translating

the data available in the neighborhood. Any new data is displayed

as fast as it can be retrieved from secondary store. The data

base management scheme used by the GDD uses an indexing system

31

r_i r
i i i
i i i

i 1
i i

i i

•I-

+• 11

<n
o
o
o
I
or
O
CD
I
e>
lu

Q
Z
<
CO

o
o

ft

4-

+

i i i i i
i i i i i
l J J l i

ft

o

i
i-

to

•}

I

<

32

LEVEL N

LEVEL N + I

I

Figure 10 ZOOMING WITH BLOCKS AND DETAIL LEVELS

33

which eliminates searches and minimizes the number of accesses to

secondary store needed to perform this retrieval process.

Data Organization

To form the blocks with which neighborhoods are composed, a

grid is superimposed over the map area. The geographic data for

one detail level of a feature is placed into the block of the

grid surrounding it. This blocking process is described in

Appendix I. Once divided into blocks, the data is stored on

secondary store in column order (this process is also described

in Appendix I). This is shown in Figure 11 where blocks are

stored in secondary storage contiguously in the order in which

they are labeled. When the blocks are stored in this way, it is

possible to retrieve a single four-block column of a 16-block

neighborhood with one storage access since the four blocks are

stored contiguously. This saves considerable time since it is

the seek time, not the data transfer time, that causes the bottle-

neck in the retrieval process.

Index Organization

An index entry for each block is created and stored in row

order in a file on the storage device. An index is diagrammed in

Figure 12, where the index entries are stored contiguously in

the order shown. Such an ordering allows the index entries of the

four blocks which head the four columns of a neighborhood to be

retrieved with a single storage access. An index entry contains

two pieces of data - the storage address of the block and the

length of contiguous data that must be read starting at this

address to retrieve the data for all four blocks in the column

of the neighborhood headed by the block.

Retrieval Process

Figure 13 puts the entire process together. Given a center

point of the display, the intersection of the grid lines nearest

34

10

I
<

Ul
>
UJ

UJ
o
<
o
z
ce
ui
Q
cc
O

C9
z

o
o
_J
CD

v

35

BLOCK #

10

19

63

72

81

ADDR LENGTH

1 fi r—'

l1 rh _J

Figure 12 ORDERING AND FORMAT OF AN INDEX FOR A DETAIL LEVEL

36

z
UJ
_J

ae o o <

UJ
v>
<

a. CD
<

<

• • • • • •

• • • • • •

X
UJ
a

o
to

en
<r

I

<

V)
111
o
o
or
CL

<
>
UJ

cr
UJ
a:

en
<
CD

<
a

to

a.
<
2

37

the center point can be determined. This grid point then determines

the upper left block in the neighborhood. This block number is used

as a pointer to the index to retrieve the four index entries for

the four blocks heading the columns of the neighborhood. Since

they are stored contiguously, one access is required. Using the

length in the index, each column can be read from storage. Four

accesses are required to retrieve the data for an entire neighbor-

hood.

PARALLEL DATA BASES

The previous discussion of data management explains how a

single detail level of a single feature is managed. The system

does, however, have multiple features selectable by the user, and

each feature has several detail levels. These multiple features

are said to be handled in parallel with one another. That is,

each feature in the feature library is treated as if it were the

only feature data base available to the system. When a function

is requested, each feature in the library is processed identically,

one after the other.

The example in Figure 14 shows how parallel data bases are

processed and how the correct detail level of each parallel

data base is chosen. In Figure 14 three feature data bases are

shown, each with several levels of detail. For each detail level,

a range of extent over which that detail level provides adequate

resolution is defined. (The ranges for detail levels of a feature

overlap to prevent thrashing back and forth if a user zooms in

and out around a threshold.) The vertical line in the figure

shows the current extent of the display. The detail level of the

features with which this line intersects is the one that should

be displayed at this extent. It should be noted that there is no

38

N
> >
K K

CO

UJ >

CM IO *
cr OC CE CE
(E CE CE CE

o
N
o

IO

o

CO

< o o

UJ
I-
X

 (M IO * — CM
 CM IO CE IT CE £C > >
o o o cr CE CE CC CE OC

IO

en

I

<

39

relationship between detail levels of different features. The

fact that detail level 1 of one feature is displayed does not

mean that another feature must be displayed at level 1, or, for

that matter, displayed at all. Finally, before being displayed,

a "user interest vector," shown along the top of the figure, is

checked to see if the features allowed at this extent are wanted

by the user. For those that are selected by the user, the file

numbers of the data file and index file and the number of blocks

into which the detail level has been divided are passed to the

data management system. Thus, the data management system treats

all detail levels and features the same; it simply retrieves the

index entries and actual data from different files.

40

SECTION IV

IMPLEMENTATION TOOLS

INTRODUCTION

The GDD was implemented using 7090's existing distributed

processing computer system. To support this system several large

software packages were written: a message processor to support

the distributed processing, a graphics display system, and a file

management system. These programs were used to implement the GDD.

Below, the system architecture is presented followed by a

brief summary of each of these software packages.

SYSTEM ARCHITECTURE

The 7090 computer facility is a two-computer distributed

processing system. Figure 15 is a schematic of the system. The

Interdata 70 (1-70) is the display processor driving a RAMTEK

digital color television interface. It has 64K of memory and

shares a 600-line-a-minute Data Products printer and a 200-card-

per-minute card reader with the Interdata 4 (1-4). The 1-4 with

its 64K of core is the applications machine connected to a Vermont

drum with a four-megabyte capacity. The two machines communicate

with each other via a Bell 201 communications interface running at

25K baud. Both machines run the Interdata BOSS 4B operating

system and can operate totally independent of one another. The

actual display devices attached to the RAMTEK are a Conrac TV

monitor and a large screen, ADVENT, projection TV. A trackball

and function key pad are also connected to the RAMTEK.

Design Philosophy

The design philosophy of this architecture is summarized

here. A large Command, Control and Communication system has many

41

<
a. b.

a UJ
a. a on < < " 1U
o UJ

a.

o
10

91*

o
o
o
o

o
o
i-
<
2
UJ
X o

in

42

processes running concurrently with a need to communicate with

each other. Since a process often needs to send a message simul-

taneously to more than one process, some of which are unknown

to it, it makes sense to have a broadcast system that is receiver

oriented. That is, a message is sent by putting it on a com-

munications bus where it can be examined by each process running

on the system. The process can either use the message or ignore it.

The receiver decides what messages it wants, not the sender.

Such a system cuts down on message traffic and relieves the

application programmer of communications overhead.

In our system, the 1-70 is a display processor running an

operator display station. The 1-4 is an application machine which

handles the geography for the system. The data link substitutes

for a bus, though the bus-receiver-oriented approach is simulated

by the Message Processor, one of the software packages mentioned

above.

MESSAGE PROCESSOR

The Message Processor program, MP, simulates the bus com-

munication system discussed above. A copy of MP resides on each

machine and acts as the system interface to the 201 communication

device.

When an application program which will use MP is designed,

the programmer must decide what information will be broadcast

throughout the system by MP. This information is usually of

global importance in nature, such as the center point and extent

of the displayed map in the GDD. Once this is decided, a format

for the messages containing information is formed and a type

assigned to each message. The programmer can then write the

different routines of the system, knowing that no matter how many

routines want to receive a message, he only has to specify the

43

type and send the message once. If a routine wants to receive a

message of a certain type, the programmer must only make an entry

in an MP table to that effect.

At initialization, the tables are constructed in MP identifying

which programs want to receive what message types and on which

machine each receiving program is resident. When a message is

sent, the user calls MP with two arguments - the message and the

message type. These two arguments are first sent to the MP on

the other machine. The two MP's then check the message type against

their internal tables. When a match is found in the table, MP

invokes the program associated with that matched type. Each

program is allowed to run to completion, at which time the next

program in the table which wants to receive that message type

is invoked. Each program thus appears to be continually examining

a bus containing the message stream and picking off only the ones

necessary for its operation.

It should be noted here that this implementation permits

true distributed processing. There is no one large machine in

control with several satellites; control is distributed between

both machines, each doing its separate task independent of the

other. It also should be noted that each machine is not dedicated

to a single task; several processes are resident on each machine.

The execution of these processes is controlled by MP as a function

of the messages received and which process or processes want to

receive that message. If several processes running on one machine

degrade performance, the situation can be improved by adding

another processor onto the bus. The theory of the bus operation

puts no limit on the number of machines running in the network.

GRAPHICS PACKAGE

PALLET is a sophisticated graphics display program which

44

provides the user interface to the RAMTEK digital TV driver.

Through a series of subroutine calls the user can define images of

points, lines, arcs, blocks of color and characters. Once defined,

these images can be stored on drum or displayed on the RAMTEK.

Any image stored on drum can be used along with points, lines, arcs,

blocks and characters to form another image, which also may be

displayed or stored. With the ability to refer to images or

parts of images by name, change color, erase images and control

cursor position and a function key pad, PALLET becomes a very

versatile interface to the RAMTEK.

Instancing

PALLET is designed around the graphics concept of instancing.

A graphics instance is a geometric form that can be used repeatedly,

either in a single image or in many images. A common image is

formed with lines, points, arcs, blocks and characters given a

name and stored in secondary store. This image can now be an

instance and used several times to form another image by recalling

it by name. For example, the instance could be a representation

of a window. In the construction of an image of a house, the

instance of the window would be used several times, the only

difference being the position of the window in the image of the

house each time the instance was used.

Coordinate Systems

Position of the window in the house opens the Pandora's box

of coordinate systems within PALLET. When an image is initially

defined with an OPEN command, the coordinates of the lower left

and upper right corners of the space for the image are given.

This establishes the coordinate system of the display space for

that image. When one of the primitive forms, lines, points,

blocks or characters is placed in an image, it is positioned in

the image according to the coordinate system with which the image

45

was opened. If any of the X, Y coordinates of the points of the

primitive form fall outside the display space, the forms are

clipped off at the boundary. Now, when one includes an instance,

that is, a previously defined image, into another image, one

specifies where in the coordinate system of the new image the

lower left and upper right corner of the display space of the

instance should be placed. This nesting of the coordinate systems

is shown in Figure 16.

Use by GDP

As an example of how PALLET coordinate systems work, let's

look at how the GDD uses PALLET. PALLET is used by the GDD to

display both the menu and the map. The menu is a straightforward

application, declaring a display space and positioning characters

within it. When the select function button is pressed, the

cursor position is read. Since the position of items in the menu

is known from when the image was constructed, the cursor position

determines which feature and function have been selected. The

map, on the other hand, is a bit more complex and more useful

for tutorial purposes.

An image called "world" is opened from the lower left (0,0)

to the upper right (511,479). (This coordinate system was chosen

because the RAKTEK raster is 479 lines by 511 dots.) Into this

image is included an image called "map." The display space of

"map" is defined to be the corners of our European map given in

the coordinate system of the projected map. The coordinates are

given such that the corners of "map" fall within the "world"

display space to give the proper initial center point and extent.

If any of our map data which is in projected coordinates is now

displayed in the "map" display space, it will appear in the

correct position relative to any other piece of map data since the

coordinate systems of the projected map and the display space of

"map" are identical.
46

(0,0)

(10,10)

OPEN (WINDOW, 0., 0., 10., 10.)

(100,100)

/\

OPEN (HOUSE, 0..0., 100., 100.)

(0,0)

(100, 100)

INCLUDE (WINDOW, 50., 40., 65. ,55.)

50 65

Figure 16 INCLUSION OF ONE IMAGE INTO ANOTHER

47

Implementation

PALLET has been implemented using both machines, a fact

dictated by the system configuration. The part of PALLET con-

trolling the display, interfacing directly with the RAMTEK, is

resident on the 1-70. Because of the use of secondary store for

graphics instancing, that part of PALLET which constructs images

is resident on the 1-4. The two parts communicate via MP. Once

an image is constructed and designated for display, it is sent

out on the bus and received by the 1-70 portion of PALLET, where

it is processed and turned into a display list with the appropriate

translation and extent applied to it.

FILE MANAGEMENT PACKAGE

The File Management Package (FMP) handles the storage and

retrieval of data for PALLET. Through a system of subroutine

calls to FMP, PALLET can store data in secondary store in a

hierarchical file structure.

Except for opening the physical file used by FMP and initial-

izing FMP when the GDD is executed, FMP is transparent to the

GDD. No further description is necessary.

48

SECTION V

IMPLEMENTATION DESIGN OF THE GDD

INTRODUCTION

The Geographic Data Display program was designed as six

separate modules written mostly in FORTRAN: Menu, Function Request

Handler, Data Exception Handler, Data Base Management, Mode Change

and Initialization. The Menu module allows the user to select

and delete features with a menu. The Function Handler processes

zoom and translate requests at the top level and passes the new

center point and scale to the Data Exception module. This module

then determines what, if any, detail levels and neighborhoods

need changing. The Data Base Management module, written mostly

in assembler, retrieves the new neighborhoods designated by the

Data Exception module or the Menu module and passes the data to

PALLET. The Mode module handles the mode change functions and

Initialization sets the system for operation.

This section is designed to serve as top level program

documentation. First, the communication between modules will be

defined, and then the function and implementation of each module

will be discussed separately. Individual subroutines are documented

in Appendices V and VI.

MODULE COMMUNICATION

The six modules of the GDD communicate via common variables

and MP. Within GDD, MP is used only between the Function Request

Handler and the Data Exception Handler. This is necessary since

the Function Request Handler has been implemented on the 1-70 to

enable faster response to the user. The other five modules all

reside on the 1-4 and only communicate with each other through the

labeled common COMMUN. Figure 17 shows the interconnection of

49

ZOOM
TRANSLATE

BUTTONS

MENU

FUNCTION
BUTTONS

MODE

FUNCTION

BUTTONS

MP

FUNCTION

REQUEST
HANDLER

MENU
MODULE

MP

DATA
EXCEPTION

COMMUN
COMMON

COMMUN
^COMMON

DBM
MODULE

COMMUN
.COMMON INITIALIZATION

MODULE

MP

PALLET

Figure 17 INTERNAL COMMUNICATIONS OF THE SIX 6DD MODULES

50

the six GDD modules.

When a zoom or translate request is made the Function Request

Handler broadcasts, via MP, the new center point and/or extent.

The Data Exception module receives this message, stores the in-

formation in the CURSTA labeled common (all commons are documented

in Appendix IV), and determines what new data need to be added

and what data need to be deleted. These decisions are recorded

in the SELECT and DELETE arrays of the COMMUN common. Each

geographic feature available to the system has an entry in these

two arrays. If a data base needs to be displayed or a detail

level needs to be changed, the proper entry in the SELECT array

is set equal to the detail level at which it should be displayed.

If a currently displayed feature needs to be deleted the appropriate

entry in the DELETE array is set non-zero. The relationship

between entries in the arrays and feature data bases is discussed

in Appendix IV.

The Menu module works in a similar manner. When the operator

selects or deletes a feature, the proper entries in SELECT and

DELETE are changed.

After either the Data Exception module or the Menu module

have set COMMUN, the Data Base Management (DBM) module is activated

by a subroutine call to MDISP. The DBM module then sends erase

commands to PALLET for those features whose DELETE entry is non-

zero and retrieves data from secondary store for those features

whose SELECT entry is non-zero.

MENU MODULE

The Menu module processes all selection and deletion requests

made via the menu. To do this, it makes heavy use of PALLET for

displaying the menu and for responding to and receiving the user

requests. Table I contains a list of the subroutines in the Menu

51

Table I

Module Subroutines

MENU
FUNCTION
REQUEST HANDLER

DATA
EXCEPTION

DATA BASE
MANAGEMENT MODE INIT

CHARLV CRTOMP AUTOFZ ALLOC,DEALOC ATOFFS IMPTAB

CLEVEL* ERMSG AUTONZ CLMERS AUTONS INIT

CURPOS NEWCEN CLEVEL* ERMSG STATCS REDCOM

DBPOS SETMSG CURSTA GRDCEN* STATIN*

MENUUP STATIN* GRDCEN* INMVE

MESLCT TRANTP MTRANS MDISP

NAME* ZMINTP ZMTRNS MS END

RESPON ZMOUTP NAME*

SETSTA ZOMTOP REDSND

WRTCHR RETREV

RINDEX

RPCOL

SETBF

SETINX

SETITM

TOPLFT

* Subroutines shared by one or more modules.

52

module. MENUUP and MESLCT are two main line routines called

when the proper function buttons are pressed.

The following discussion is in two parts. Under MENUUP the

generation and display of the menu is discussed, followed by a

description of the entry of the completed menu. Under MESLCT

selection and deletion of a specific menu entry are discussed.

MENUUP

When the menu button on the function pad is pressed, the

MENUUP subroutine is called to display the menu for use by the

operator (refer to Figure 18). MENUUP first displays the basic

menu stored in the PALLET file when the system is initialized

(see Appendix II). It then creates an image called STATUS.

MENUUP adds to the STATUS image the detail level of each of the

features in the menu currently being displayed. A message stating

the mode of the system is also included in STATUS before it is

displayed using PALLET. If the mode is normal or special the

variable MENU is set to allow the user to select and delete

features, and MENUUP returns. If the mode is automatic, MENUUP

simply returns since no feature selection is allowed in automatic

mode.

After the menu is brought up and the variable MENU is set

to allow selection, the next time MENUUP is called by a function

button request, the short procedure which enters the user's menu

selection is executed. Here, the menu is cleared from the display,

and the Data Base Management module is called via a call to MDISP.

MDISP will examine the COMMUN common as set by the MESLCT routine

of the Menu module to determine what features need to be displayed

and deleted.

MESLCT

MESLCT is the routine invoked by pushing the select function

button; it is flowcharted in Figure 19. This routine records

53

MENU
FUNCTION

KEY

MENU = OFF

DISPLAY
MENU IMAGE
STORED ON

DRUM

CLEAR MENU
FROM

DISPLAY

CONSTRUCT AND
DISPLAY STATUS

IMAGE

CALL
DATA BASE'

^MANAGEMENT/
MODULE

in

Figure 18 FLOWCHART OF MENUUP OF MENU MODULE

54

SELECT
FUNCTION KEY

CALCULATE
LINE AND

FUNCTION
SELECTED BY

CURSOR

RETRIEVE
INDICES OF
DATA BASES

REPRESENTED
BY LINE OF

MENU

A
rES ., SELECT \ NO
«•—<VUNCTION]>—•«

DISPLAY
ERROR

MESSAGES

YES^/ERROR\"
*—<CONDITIONS>

/ ERROR \ YES
<CONDITIONS>—»
\ ? yT

DISPLAY
ERROR

MESSAGES

1 NO 1 NO
CALCULATE

DETAIL LEVEL
AS FUNCTION
OF CURRENT

EXTENT

DELETE

ON

\

_5

SELECT

DETAIL
LEVEL

I 1 1 1 \ 1

Figure 19 FLOWCHART OF MESLCT OF MENU MODULE

55

the features selected and deleted by the user in the COMMUN

common and writes responses to the display screen each time the

select function button is pressed. If the variable MENU is not

set by MENUUP to allow user selection and deletion, MESLCT simply

returns, resulting in a no-op.

On entry, MESLCT first determines which function the user

has positioned the cursor beneath and also opposite which feature

of the menu. An error message is displayed if the cursor is not

aligned with either function or any of the features. If there

is no error, the program is set up to process the macro expansion

of the feature selected. This is done by setting up a loop

which will be executed once for each feature in the expansion.

The result is that each feature in the expansion appears as if

it was selected separately.

If a feature was selected for display, several abnormal

conditions are tested for - the feature has already been selected,

it is currently displayed, or it has also been selected for

deletion. In any of the three cases, a response is displayed.

In the latter case, the entry in the DELETE array of the COMMUN

common is turned off, resulting in a no-op for that feature. If

none of these conditions exist, the subroutine CLEVEL determines

at which detail level the feature should be displayed. The

proper entry in the SELECT array of the COMMUN common is set

equal to this detail level, a response is made to the user, and

the detail level displayed in the menu.

The delete function works in an analogous fashion. A test

is done to see if the feature is not currently displayed or if

it has previously been selected for display. In either case an

error message is displayed. In the last case SELECT is set to

zero so that the feature will not be displayed. If no errors

exist the DELETE entry for the feature being processed is set

56

non-zero. An "X" opposite the feature is displayed in the menu

and a response message given to the user.

FUNCTION REQUEST HANDLER

The Function Request Handler is invoked by pressing either

the translate or zoom buttons. Its purpose is to perform an

immediate zoom or translate on the data available, calculate a

new center point and extent, and broadcast these parameters to

the other processes in the system. To provide as fast a response

to a user request as possible, the module is resident on the

1-70, along with the PALLET routines that do translate and zoom.

Table I contains a list of the subroutines in the Function

Request Module; a flowchart of the module is shown in Figure 20.

Z0MT0P and TRANTP are the two mainline routines, the others are

utilities used by one or both of the functions. The following

discussion will be divided into two sections - one on zoom and

one on translate.

Zoom

ZOMTOP is the mainline routine for both zoom in and zoom out

requests. The direction of the zoom is determined by the magnitude

of FAC, a calling parameter to ZOMTOP. When the zoom in button

is pushed, the ZMINTP routine is invoked. This routine simply

calls ZOMTOP with an appropriate value for FAC. For a zoom out,

ZMOUTP is invoked, and ZOMTOP is called with a value for FAC that

is the inverse of the value used for a zoom in. Thus, though

ZOMTOP is the mainline routine, it is not directly invoked by the

push of a function button.

Initially, ZOMTOP sets up the new center point and extent,

message to be broadcast to the other processes in the system.

This involves converting the absolute cursor position to map

coordinates, calculating the new center point and extent, and

storing these values in the CURSTA array.

57

ZOOM IN
FUNCTION

KEY

ZOOM OUT
FUNCTION

KEY

ZMINTP ZMOUTP

SET
ZOOM OUT

MAG FACTOR

ZOMTOP

SET
CURRENT

CENTER POINT
AND EXTENT

MSG

CALL PALLET
TO SCALE
AVAILABLE

(NEIGHBORHOODS

TRANSLATE
FUNCTION

KEY

BROADCAST
CENTER POINT
AND EXTENT

MSG

SETUP
CURRENT

CENTER POINT
AND EXTENT MSG

CALCULATE
X AND Y

DISTANCE FOR
TRANSLATION

CALL PALLET
TO TRANSLATE

AVAILABLE
NEIGHBORHOODS

BROADCAST
CENTER POINT

AND EXTENT
MSG

MP MP

m
S

(

DATA \
EXCEPTION y

MODULE /

/ DATA
(EXCEPTION
\ MODULE

Figure 20 FLOWCHART OF FUNCTION REQUEST HANDLER

58

Once the message is set, the PALLET routine SCALE is called

to perform an immediate zoom on the neighborhood of data available.

The message is then sent via MP directly to the CURSTA routine of

the Data Exception module and to any other process that wants

to receive it.

Translate

TRANTP is invoked directly by a function key to handle a

translate request. It, like ZOMTOP, sets the broadcast message

first. It then calculates the distance the current display must

be translated in the x and y directions. The PALLET routine TRANS

is called to do this immediate translation. The new center point

of the map is established as the cursor position, and the center

point and extent message are broadcast. Again as in zoom, it is

sent directly to the CURSTA routine of the Data Exception module.

DATA EXCEPTION MODULE
•

The Data Exception module determines which features currently

displayed need a new neighborhood of data or a new detail level.

It is entered only through the reception of a center point and

extent message by the CURSTA routine, which in turn calls the

mainline routine of the module, ZMTRNS. ZMTRNS examines all data

bases for the possibility of a detail level change or a new neigh-

borhood. The algorithms for detail level change are different

for each of the three operating modes: automatic, normal and

special. The following discussion begins with a brief explanation

of the entry into the module and is followed by descriptions of

the different zoom algorithms. It concludes with the translation

algorithm. Table I contains a list of the subroutines included in

this module; Figure 21 is a flowchart of the module.

59

CENTER POINT 8
EXTENT MSG "" MP

RECORD
CENTER POINT

AND EXTENT
IN CURSTA
COMMON

CURSTA

SET SELECT
AND DELETE

ARRAYS FOR ANY
FEATURE NEEDING

DETAIL LEVEL
CHANGE

SET SELECT
AND DELETE

ARRAYS FOR ANY
USER SELECTED

FEATURES

DATA BASE
NEED NEW>

NEIGHBORHOOD

JYES

^VERTICAL
<TRANSLATEv-
COMPONENT

TNO
/ (RPCOL)
/ DATA MAN
(MODULE
\(TO REPLACE,
\ COLUMNS)/

YES SET SELECT
AND DELETE

ARRAY

ANY-
MORE

"DATA BASES'
TO CHECK

NO 1
» <

(MDISP)
DATA BASE

^MANAGEMENT/
MODULE

Figure 21 FLOWCHART OF DATA EXCEPTION MODULE

60

Module Entry

When a zoom or translate request is made the Function Request

Handler broadcasts a message containing the new center point and

extent and the previous center point and extent. The CURSTA

routine of the Data Exception module receives this message and

stores this global data in the CURSTA common for use by any routine.

When the data is stored, ZMTRNS is called to determine new detail

levels and neighborhoods.

Automatic Mode Zoom

If the system is in automatic mode, ZMTRNS calls AUTONZ to

determine what features should be displayed and at what detail

level. The AUTONZ algorithm is extremely simple. For each data

base available to the system a call is made to the CLEVEL routine.

This routine, using the predetermined thresholds for the detail

levels of the data base being checked, calculates and returns

the detail level at which the feature should be displayed. If the

level returned is equal to the current level of the feature, nothing

is done. Otherwise, the correct entry in SELECT is set equal to

the returned level, and the appropriate entry in DELETE is set

non-zero to force an erase of the current neighborhood of that

feature. The procedure is repeated for each feature. Note that

the question of whether a feature is displayed or not is strictly

a function of the current extent and the predetermined thresholds

of the detail levels of that feature.

Normal Mode Zoom

If the system is in normal mode, ZMTRNS will call the AUTOFZ

routine. This routine functions in a manner analogous to AUTONZ

with one addition. In AUTONZ the detail level of each data base

is checked on every zoom. In AUTOFZ, only those data bases that

have been selected are checked. A feature is considered selected

if the location in the AUTOFZ array associated with it is non-zero.

61

This location is set when either the feature is selected or deleted

by the operator using the menu, or when it comes within or falls

out of its display range in automatic mode.

Special

In special mode no detail levels are changed. Thus, if the

system is in special mode, ZMTRNS ignores detail level changes

and calls the translation routine immediately.

Translation

After all potential detail level changes have been examined

by ZMTRNS, MTRANS is called to determine if any neighborhoods

need to be altered. Those features that had a detail level

change require no checking, since their new neighborhoods will

be calculated according to the new center point. In the case

where the detail level of a feature was not changed, or where

ZMTRNS was invoked by a pure translate request, neighborhoods

must be checked for horizontal and vertical translation components.

Horizontal translation requires the change of one or two columns;

vertical translation requires an entirely new neighborhood.

For each data base, MTRANS uses the routine GRDCEN to determine

the point of the grid used to divide a data base into blocks

closest to the center point of the displayed map. This new grid

point is compared to the grid point used to define the currently

displayed neighborhood. If any change exists in the y coordinate,

a vertical change has occurred, the entire neighborhood must be

replaced and the proper entry in SELECT is set to the current

detail level. The DELETE entry is also set non-zero.

If there is only a change in the x coordinate of the grid

points, the RPCOL routine is called to invoke the Data Base

Management module. This is a special entry into this module

which only replaces one or two columns of a neighborhood at a time.

62

After all features have been checked, MTRANS calls the Data Base

Management module via MDISP to replace all neighborhoods with a

vertical translation component which have been tagged in the SELECT

array of the COMMUN common by ZMTRNS.

DATA BASE MANAGEMENT

The Data Base Management module is responsible for retrieving

data from secondary storage and displaying it, and erasing already

displayed data from the display screen. It has two entry points -

one for retrieving an entire neighborhood, and one for replacing

only one or two columns of a neighborhood. These two entry points

are MDISP and RPCOL, respectively. Both use the support routines

listed in Table I and work in a very similar manner. The following

discussion is in two parts - MDISP and RPCOL.

MDISP

MDISP is the Data Base Management module entry point which

examines the COMMUN common, set by either the Menu module or the

Data Exception module, to determine which data bases to delete

from the display and which to retrieve and display. It first

checks for any necessary erasures, and then proceeds to calculate,

retrieve and display new neighborhoods, as diagrammed in Figure 22.

Each entry in the DELETE array of the COMMUN common is

checked. If an entry is non-zero the CLMERS routine is called to

make four entries in the erase table, one for each column of the

neighborhood. After all data bases have been examined, the erase

array is sent to PALLET on the display processor and the deletion

process is completed.

Now each entry in the SELECT array of the COMMUN common is

checked for a non-zero value. This non-zero value is the detail

level at which the data base is to be displayed. For each

63

MENU MODULE
DATA EXCEPTION

MODULE

ERASE ALL
DATA BASES
FLAGGED IN

DELETE ARRAY

CALCULATE
BLOCK #

OF TOP LEFT
BLOCK IN

NEIGHBORHOOD

READ INDEX
FOR

NEIGHBORHOOD

READ DATA
FROM DRUM
AND SEND 4

COLUMNS TO
PALLET

Figure 22 FLOWCHART OF MDISP ENTRY INTO DATA MANAGEMENT MODULE

64

feature selected, the center point of the neighborhood is cal-

culated and used by the TOPLFT routine to determine the top left

block of the 16 block neighborhood. This section is used by

RINDEX to read the proper index entries from secondary store.

Once the index is read, a core buffer is allocated large enough

to hold the largest column of data as indicated by the index. The

REDSND routine then uses each index entry to locate and read a

column of data from secondary store. A PALLET image header is

added to a retrieved column, and it is sent to PALLET to be dis-

played. This retrieval procedure is repeated once for each column

in the data base. Once a neighborhood is displayed, the next

feature selected is processed.

RPCOL

RPCOL is similar to MDISP in function except that it only

works with one feature at a time. Like MDISP, it first erases

already displayed columns, and then retrieves and displays the

new column, or columns.

RPCOL first calculates which one or two columns are being

replaced - the left-most, the right-most or the left two or the

right two. The CLMERS routine is invoked to enter the proper

columns in the erase array, and the array is sent to PALLET

where the data is erased.

The index for the proper neighborhood is read. The retrieval

process outlined in the MDISP section is now executed once for

each column of the neighborhood not currently displayed. RPCOL is

diagrammed in Figure 23.

MODE

The Mode module changes the mode of the system when either

the automatic, normal or special function button is pressed.

The module consists of only the three short routines listed in

65

DATA EXCEPTION

MODULE

CALCULATE WHICH

COLUMNS OF DATA

BASE TO ERASE

ERASE PROPER

COLUMNS

ORDER REMAINING

COLUMN IDENTIFIERS

CALCULATE BLOCK #

OF TOP LEFT BLOCK

IN NEIGHBORHOOD

READ INDEX FOR

NEIGHBORHOOD

READ DATA FOR
MISSING COLUMNS
FROM DRUM AND
SEND TO PALLET

f RETURN)

Figure 23 FLOWCHART OF RPCOL ENTRY INTO DATA
MANAGEMENT MODULE

66

Table I. Each routine works exactly like the other two. When

a mode function key is pressed, the respective routine is invoked

which then sets the MODE variable of the CURSTA common to the

proper value. The proper value is a 1, 2 or 3 depending on

whether the mode selected is automatic, normal or special.

INITIALIZATION

The Initialization module prepares the system for execution.

Its four routines are listed in Table I. Execution of the module

is straightforward. Common variables are initialized by the

REDCOM routines which read a tape made by the SETUP routine

described in Appendix II. It initializes MP and FMP by setting

up buffers and designating the file containing the menu image.

It then assigns to the proper buttons the functions which are

to be invoked when a function key is pressed. The initial center

point and extent are sent via MP to the STATIN routine of the

Function Request Handler to initialize the CURSTA common array on

the 1-70 side of the system. The Data Base Management module

is finally called to display the initial data bases.

67

APPENDIX I

DATA BASE CONSTRUCTION PROGRAMS AND PROCEDURES

INTRODUCTION

In order to run the GDD, geographic data bases have to be

stored on secondary store. This appendix gives a brief description

of, and operating instructions for, the two programs needed to

store prepared data bases on the Vermont drum.

DATA BASE CONSTRUCTION

Once a magnetic tape containing geographic data in chain

form has been put through the detail analysis and editing process

described in ESD-TR-76-360, "Geographic Data Base Development," it is

ready to be stored on drum. (The format of one of these tapes and

the programs used to manipulate the data are all fully described in

ESD-TR-76-360.) This storage process for a single detail level of

one feature is done in two steps by two programs — BLOKS and IMAGE.

BLOKS divides a data base into the number of blocks specified by the

user for that detail level, and IMAGE stores each block on drum and

constructs an index.

BLOKS

The BLOKS program divides the chains of an edited tape of

geographic data into the blocks which will be used to construct

neighborhoods. Input to the program is(1) a geographic data

base tape which has had each point of a chain assigned a detail

rank,(2) the rank of points which the user wishes to extract

from the tape for this detail level of a feature and(3) the

number of blocks into which this detail level should be divided.

The program then lays a grid over the map and examines one chain

at a time. A chain that does not fall entirely within a block

68

is broken up into smaller chains which do lie entirely in a

single block. Only those points of a chain that have the same

detail level or less than the one specified by the user are kept

on the output tape. This output tape is a list of these new,

smaller chains sorted by blocks. The blocks are ordered on the

output tape according to columns, as dictated by the data base

management scheme described in Section III. This process is

repeated once for each detail level of a feature. By varying the

detail level rank specified and the number of blocks, the number

of points in the data base can be altered, and the geographic

area covered by a single block can be changed.

BLOCKING ALGORITHM

The following algorithm is used by BLOKS to create the

blocked output chains.

1. Input chains from the data base are processed one point

at a time.

2. A grid block is assigned to the first point of a chain

using the grid dimensions.

3. A chain is started in the assigned block, and the first

point is filled into the chain.

4. Points are then read and copied into the grid block

until either an end of chain mark is found (in which

case the mark is written to end the chain in the current

block and processing for the next chain is begun) , or a

point falls outside the current block.

5a. When a point falls outside the current block, the pro-

cedure described below is used to generate a block entry

or exit point each time a grid line is crossed by the

chain. (See Figure 24.)

69

CURRENJ_
POINT

- »^

CROSSED BLOCKS

•LAST BLOCK

-LAST POINT FILLED IN

GENERATED ENTRY AND EXIT POINTS
ARE INDICATED BY THE SYMBOL 'o'

ARROWS (i-») INDICATE INTO WHICH
BLOCK(S) A POINT IS FILLED

Figure 24 GENERATED ENTRY AND EXIT POINTS FOR CROSSED BLOCKS

1 1

\
1 1

\
1

/

/

t
ARROWS INDICATE INTO WHICH
BLOCK A POINT IS FILLED

Figure 25 ASSIGNMENT OF SINGLE -POINT CHAINS

70

b. The equation is found for the line connecting the current

point (the point falling outside the current block) with

the last point that was filled into a block.

c. The point at which this line crosses the boundary of the

last block, the boundary crossing point, is filled into

the block, and the chain is ended in this block.

d. A new chain is started in the block that has been entered,

and the boundary crossing point becomes the first point

in the new chain.

e. If the current point is in the crossed block it is now

filled in as the second point in the new chain, and the

next point is read as usual.

f. If the current point is outside the crossed block an

exit point is generated for the block using the procedure

in a and b above and the chain ended.

g. Entry and exit points are generated in this way for all

blocks crossed in reaching the current point; i.e., until

the current point falls into a crossed block.

A special procedure is used to handle input points which happen

to fall on a boundary between grid blocks. Such a point will be

referred to as a "boundary point."

6. When a boundary point falls outside the current block it

is treated as a normal point for generating entry and

exit points for crossed blocks. The boundary point is

considered to be outside the block only if it is not on

a boundary of that block.

7a. End of chain point — If the boundary point is on a

boundary of the current block and is the end of an input

chain it is filled into the current block and the current

chain is ended.

71

b. Mid-chain point — If the boundary point is on a boundary

of the current block and does not start or end a chain,

the point is first filled into the current block. A

look ahead to the next data point is then done to deter-

mine which block the input chain will enter.

If a new block is entered, the chain in the current block

is ended and the boundary point is used to start a new

chain in the block being entered. If the next point

continues in the current block, the chain is processed

normally.

c. Start of chain — If the boundary point is on a boundary

of the current block and is the start of an input chain,

a look ahead to the next data point is done to determine

which block the chain enters. A chain is started in

this block using the boundary point as its first point.

d. Single point chain — If a boundary point both starts

and ends an input chain it is filled into the block

assigned it by the block-assigning routine. This routine

assigns a boundary point to the right or upper block

depending on whether a vertical or horizontal grid line

is straddled. A vertex point (one falling at the inter-

section of four blocks) is assigned to the upper right

block. This rule is used unless it causes a point to

fall outside the map box, in which case the point is

assigned to the lower or left block. (See Figure 25.)

Operating Instructions

To run BLOKS two control cards must be supplied using the

following formats:

72

Card #1
(corner points
of map box)

lower left
X coordinate

lower left
Y coordinate

upper right
X coordinate

upper right
Y coordinate

columns 1-8
(decimal in col. 3)

columns 10-17
(decimal in col. 12)

columns 19-26
(decimal in col. 21)

columns 28-35
(decimal in col. 30)

Card #2 number of blocks columns 1-3
along the longer (integer-right justified)
side of box

detail level at columns 5-6
which to select (integer-right justified)
points

The load module for BLOKS is stored on tape MMC 001.

To run BLOKS this tape should be assigned a logical unit (6)

and loaded using the operating system load command :

LO 6

The following units should be assigned to the appropriate

devices: LOGICAL UNIT
01

02

03

04

card reader for control card input

output tape device

printer

drum file 4 - used for temporary storage
of output data points

05 teletype

06 input tape device for map data base

BLOKS can now be started as follows:

ST 2E00

The control cards will be read first.

Then the teletype will ask:

73

ENTER 'T' OR 'B* FOR TOP OR BOTTOM OVERHANG

This means that the map area, defined by the four coordinates on

the first input card, is not square. The longer side of the

rectangle has been divided into the number of blocks requested

on the second control card. The block overhang requested is the

direction in which the shorter side of the map should be extended

to allow an integer number of blocks with the same dimension as

the blocks in the longer direction. The blocks are thus made

square, having a side dimension equal to the length of long side

divided by the number of blocks requested by user.

The grid dimensions and detail level to be used are now

written to the printer. Then the data points are processed and

totals for points and chains read in from the input tape and

totals for points and chains actually selected are printed. Finally,

the output tape is created and the table of blocks and the missing

block messages (those blocks containing no data) are written on

the printer.

IMAGE

From the output tape of BLOKS, the IMAGE program creates

the drum file of blocks stored in column order and the row ordered

index file to those blocks. Since each tape output by BLOKS

contains data for only one detail level of a feature, IMAGE must

be run once for each detail level of each feature. The method of

operation is simple - IMAGE reads the input tape which BLOKS has

created in column order and each block of data is stored on drum.

As it is stored the address of the data and length of the data

is recorded. Once all data is stored, the index is created by

summing the lengths of the blocks in all possible groups of four

which could form part of a neighborhood. These entries are then

sorted in row order and stored in the index file.

74

Operating Instructions

IMAGE is the first program in drum file 51 and can be loaded

with the system load sequence:

RW 51

LO 51

The following assignments are necessary:

LU Device

01 Input tape

03 Printer

05 Teletype

07 Drum

Before executing, two drum files must be allocated to receive

the data and the index. The program is executed with the system

start command ST 2E00. IMAGE will respond with a set of questions,

an example of which is given in Figure 26. The user responses are

underlined. This data, input by the user, is formatted and printed

on the line printer, followed by a list of the block numbers, in

both row and column order, the drum address for the data of a

block and the length in bytes of each block. This listing ends

with the number of drum blocks used for the data file. A listing

of the index is then printed. Figures 27, 28 and 29 show the

three parts of the IMAGE output for a 16-block detail level of a

geographic data base.

75

MAPDATA

NAME AND DETAIL LEVEL? (A4,1X,I2)

MAP 01

DATA FILE NUM? (13)

022

INDEX FILE NUM? (13)

024

BLOCK COUNT? (14)

0016

X-AXIS BLOCK COUNT? (12)

04

END

EOJ

Figure 26. Example Teletype Input for IMAGE Program

76

DATABASE MAP DETAIL LEVEL 1
DATA TILE IS 22,
INDEX EILE IS 24
X-AXIS BLOCK COUNT 4
Y-AXIS BLOCK COUNT 4
TOTAL BLOCK COUNT 16

Figure 27. IMAGE Program Output Restating Input Parameters

Ow COL CHAINS Bl OCK KMTRY POINTS

11 t 3 H 0 33
9 ? « ? 1 20
9 3 1 .5 5 1?
l 4 5 4 1 30

14 H ? 'i 15 10
10 fi 9 6 9 71
5 7 ft 11 B 47
?. 8 8 13 15 41

15 Q 7 16 8 52
1 1 1H 19 19 12 13B
7 H 1/ 2B 6 1*9
i 12 U" 35 3 41

)6 11 14 3 7 1? 91
12 14 10 4 3 7 63
B IS 14 47 6 75
4 16 1? 5? 1 69

57 PPIIM BLOCKS USED
? CUT OF 16 BLOCKS

M ISSTNT,

Figure 28. IMAGE Output Showing Number of Chains and
Points per Map Block, Drum Block Address and Byte
Entry in Drum Block for Each Block of Data.

77

HO* HIOCK TMTRV POIMTS C*l POINTS

1J M n 33 Q5
1.1 s I* |M 1fi9
IS Ifl 8 H? 340

16 37 1? <>1 20*
1 nwiH HI. nCKS USED ^Y I>">EX

Figure 29. Output of IMAGE Program Showing
Index for Column of Data

78

APPENDIX II

SYSTEM INITIALIZATION PROGRAM

INTRODUCTION

System initialization is done by the SETUP program. SETUP

assigns an initial value to every variable in common and writes

common out to tape. It also stores a PALLET image of a menu and

an empty image of "world," to which the map will be attached,

in the PALLET working file. When the GDD itself is executed,

the tape created by SETUP is read into the common locations at

the top of core, immediately initializing all variables in common.

In operation, SETUP reads the values for common variables

from cards. Those common variables not required on an input card

are set to zero or defined by some function of the input parameters.

The following discussions will describe the input cards and the

operating procedure for SETUP.

INPUT CARDS

A card (or several cards) is used to input the values for a

common block. The order in which the commons are initialized

is set by the program and will be specified below. The data on

all input cards starts in column 10. From column 10 on, the

format of the card varies according to its particular purpose.

The first nine columns are not read by SETUP but can be used by the

programmer to identify the card.

The first cards to be read contain values pertaining to

the system as a whole or to all data bases. They include the FAC,

MENU, TREES, COLORS, COMMUN, ERASE, MAP, and CURSTA commons. The

next set of cards define the values of the DATBAS common. Finally,

the PALLET file definition cards are read in and then the MACRO

common is initialized.

79

Common Initialization Cards *

The first ten cards are defined in Tables II through XI. In

these tables, the first column gives the names of the variables

to be initialized in the common identified at the top of the table.

The information in the Purpose column can be .supplemented from the

common definition tables in Appendix IV. The example value is

the value used by the current system.

Card #1 does not initialize a common. The length of the

entire common section is used by SETUP to write the correct amount

of core out to tape.

Card #3 initializes the variables which tell the system

where to locate parts of the menu. The locations are given in a

PALLET coordinate system defined to be(0.,0.)to (511.,479.) - one

unit per dot on the screen. The locations are figured out by the

24 x 14 dot matrices which contain a character. Thus, the first

line on the bottom of the screen has a y-coordinate of 24 and

the first character has an x- coordinate of 0. The second line

has y- coordinate = 48 and the second character has an x- coordinate

of 14.

On card #5 the function buttons are identified. The initial

values given in the table are the decimal representations of the

characters.- generated by the RAMTEK when these function buttons are

hit. These characters are defined in the RAMTEK documentation.

Card #6 defines the colors, red, yellow, green and black,

used by the menu for the one plugging of the RAMTEK given in

Appendix III. These colors can be changed by replugging the red,

blue and green outputs of the RAMTEK into different plugs on

the TV monitor. This, too, is documented in the RAMTEK manuals.

The COMMUN common is initialized by card #7. The feature

data bases are numbered in the order in which they are read into

the DATBAS common. By setting the proper entries in the SELECT

80

array to the detail level of the features needed in the initial

display, the user forces the display of these features.

DATBAS Initialization

The next group of cards to be read in defines the feature

library by initializing the DATBAS common. This process is done

in a loop repeated once for each feature. Within this loop is

another loop repeated once for each detail level of the feature.

Thus, each feature is defined by one card (see Table XII) followed

by two cards (see Tables XIV and XV) for each detail level of that

feature. This sequence is repeated for each feature. The order

in which the features are read in is the order in which the

features are indexed throughtout the GDD program. If the first

feature read in is coastlines, then to select coastlines for

display, the first element of the SELECT array in the GOMMUN

common is set to the desired detail level.

Tables XII through XV define the cards needed to perform the

DATBAS initialization. The first card in Table XII is needed

only once to define the number of features in the library. Each

of the other three types of cards must be repeated to initialize

all features. If there are two features, the first with two detail

levels and the second with one, the order of cards is as follows:

Card #11

Card #12 for 1st feature

Card #13 for 1st detail level

Card #14 for 1st detail level

Card #13 for 2nd detail level

Card #14 for 2nd detail level

Card #12 for 2nd feature

Card #13 for 1st detail level

Card #14 for 1st detail level

81

PALLET File and Macro Definition

This last group of cards initializes the PALLET file con-

taining the menu and the macro expansion capability of the GDD.

Two cards (Table XVI and XVII) are read first, followed by a loop

which reads two cards (Tables XVIII and XIX) for each entry in the

menu, in the order in which they should appear in the menu.

OPERATING INSTRUCTIONS

The program SETUP can be loaded from tape DHL 007 using

the COREDP program. The following sequence is necessary to load

SETUP. Computer responses are underlined.

Load DHL 007 on drive 95.

AS 0195

RW DE

BI DC00

LO DE

ST DCOO

LOAD OR STORE

LO

DEVICE NUMBER (NN)

01

START, END

0080,7000

EOJ

The following assignments must be made to run SETUP:

LU Device

01 Card Reader

05 Teletype

06 Output tape

07 Drum

82

After the assignments are made, load the input cards into the

card reader and issue the start command:

ST 2E00

When SETUP is done, the output tape will contain the initialized

common. The tape may now be used to initialize the GDD.

83

Table II

Card #1

Common - NA

Format Statement (9X,I4)

Variable Purpose

ICOML length In decimal

of all common

Example
Initial Value Card Col

2844 10-13

Format

14

84

Table III

Card #2

Common - FAC

Format Statement (9X.2F10.0)
Example

Variable Purpose Initial Value Card Col Format

ZOOMIN magnification factor .666666 10-19 F10.0
when zooming in

Z00M0T magnification factor 1.5 20-29 F10.0
when zooming out

85

Table IV

Card #3

Common - MENCON

Format Statement (9X,7F6.1)

Variable Purpose

ONXC

ONRXC

OFFXC

OFFRXC

STATY

RESYC

RLEFT

x-coordinate of the
left side of the ON
column of the menu

x-coordinate of the
right side of the ON
column

x-coordinate of left
side of OFF column

Example
Initial Value

28.0

304.

350.

x-coordinate of right 392.
side of OFF column

y-coordinate of status 48.
line of menu

y-coordinate of system 24.
response line

x-coordinate for start 28.
of status and response
lines

Card Col Format

10-15

16-21

22-27

28-33

34-39

40-45

46-51

F6.1

F6.1

F6.1

F6.1

F6.1

F6.1

F6.1

86

Table V

Card #4

Common - MENCON

Format Statement (9X,4(2A4,IX))

Variable Purpose
Example
Initial Value Card Col Format

MENNME contains PALLET name MENUIMGE 10-17 2A4
of the image of the
menu

STATUS contains PALLET name STATUS 19-26 2A4
of the image con-
taining status
information

SYSTAT contains PALLET name SYSTATUS 28-35 2A4
of character string
of the system status
message

SYSRES contains PALLET name SYSRES 37-44 2A4
of character string
.of the response
message

87

Table VI

Card #5

Common - TREES

Format Statement (9X,2I1,1X,2A4,8(I3,1X),2A4)

Variable Purpose
Example
Initial Value Card Col Format

MAPTRE PALLET device number
of map display tree

MENTRE PALLET device number
of menu display tree

WORLD PALLET name of node
to which geography
is attached

ZINBUT Zoom in function
button on RAMTEK

WORLD

141

TRNBUT Translate function
button

134

SLCTBT Select function
button

139

AUFBUT Normal mode selection
button

140

ZOTOUT Zoom out function
button

137

MENBUT Menu function button 135

AONBUT Automatic mode 136
selection button

STABUT Special mode selection 144
button

RMAP Contains PALLET name MAP
for image, defined in
map coordinate system,
containing geographic data

88

10

11

13-20

21-23

25-27

29-31

33-35

37-39

41-43

45-47

49-51

53-60

II

II

2A4

13

13

13

13

13

13

13

13

2A4

Table VII

Card #6

Common - COLORS

Format Statement (4 (12,IX))

Variable Purpose
Example
Initial Value Card Col Format

RED decimal represen-
tation for color
red on RAMTEK

02 10-11 12

YELLOW RAMTEK color yellow 06 13-14 12

GREEN RAMTEK color green 04 16-17 12

BLACK RAMTEK null color 00 19-20 12

89

Common - COMMUN

Format Statement (9X.10I2)

Variable Purpose

Table VIII

Card in

Example
Initial Value Card Col Format

SELECT defines which feature
data bases should
initially be dis-
played by setting
the proper entries
in the SELECT array
to the wanted detail
level.

01 10-29 1012

90

Table IX

Card #8

Common - ERASE

Format Statement (9X,I3)

Variable Purpose Initial Value Card Col Format

ERSIZE defines the length 40 10-12 13
of the ERASE array

91

Table X

Card #9

Common - MAP

Format Statement (9X.4F10.4)

Variable Purpose

MX1

MY1

MX2

MY2

x-coordinate of
lower left corner
of European map
in projected map
coordinates

y-coordinate of
lower left corner
of European map
in projected map
coordinates

x-coordinate of
upper right corner

y-coordinate of
upper right corner

Example
Initial Value

-.398

Card Col Format

10-19 F10.4

-.266 20-29 F10.4

.278

,410

30-39

40-49

F10.4

F10.4

92

Table XI

Card #10

Common - CURSTA

Format Statement (9X.4F10.4)

Variable Purpose

XCENM x-coordinate of
the center of the
map for initial
display in pro-
jected map
coordinates

YCENM y-coordinate of
initial center

XEXTNT initial x-extent of
map in map units per
dot on display screen

YEXTNT initial y-scale of map
in map units per raster
line

Example
Initial Value

-.03

Card Col Format

10-19

.03

,002093749

.001601576 40-49

F10.4

20-29 F10.4

30-39 F10.4

F10.4

The FORTRAN input routine gives precedence to the decimal point
in the input field, overriding the format specified for that
field.

93

Table XII

Card #11

Common - DATBAS

Format Statement (9X,I2)

Variable Purpose
Example
Initial Value Card Col Format

NUMDB defines number of
features in library

10-11 12

94

Table XIII

Card #12 (and repeated for each feature)

Common - DATBAS - one card for each feature

Format Statement (9X,A4,1X,I1,IX,II,IX,12)

Variable Purpose

PREFIX contains data base
name

NUMLEV number of detail
levels for this
feature

INMENU 0 if feature not
listed in menu
1 if feature is
listed

POSFET position feature is
listed in menu in
lines from the top
of the list

Example
Initial Value

RIVR

Card Col- Format

10-13

15

17

A4

II

II

19-20 12

95

Table XIV

Card #13 (and repeated for each detail level)

Common - DATBAS (one card for each detail level of feature currently
being initialized)

Format Statement (9X.2F10.6,214)

Variable Purpose

ZMOTHR zoom out extent
threshold

Example
Initial Value Card Col Format

.001395832 10-19 F10.6

ZMINTH zoom in extent
threshold

.000275720 20-29 F10.6

NUMX number of blocks
into which detail
level is divided in
x direction

NUMY number of blocks y
axis is divided into
y direction

30-33

34-37

14

14

ibid.

96

Table XV

Card #14 (and repeated for each detail level)

Common - DATBAS (one card for each detail level of feature currently
being initialized)

Format Statement (9X,213,II,IX,12)

Variable Purpose
Example
Initial Value Card Col Format

IFILE decimal file number 119
of drum file con-
taining data

DBINDX decimal file number 120
of drum file con-
taining index

ITYPE l=point data base 2
2=line data base

IC0L0R color of data base 08
according to current
plugging of RAMTEK

10-12

13-15

16

18-19

13

13

II

12

97

Table XVI

Card #15

Common - FILE

Format Statement (9X,I3)

Example
Variable Purpose Initial Value Card Col Format

MFILE identifies decimal 115 10-12 13
drum file number to
be used by PALLET
to store menu image

98

Table XVII

Card #16

Common - MACRO

Format Statement (9X.I2)

Example
Variable Purpose Initial Value Card Col Format

NUMFET number of features 2 10-11 12
actually listed in
the menu

99

Table XVIII

Card #17 (and repeated for each line in the menu)

Common - MACRO

Format Statement (9X,4A4,I2)

Variable Purpose

TITLE 16 characters to
appear as the menu
entry for that
feature

MACNUM number of features
in the macro ex-
pansion of this
menu entry

Example
Initial Value Card Col Format

RIVERS(2) 10-25 4A4

26-27 12

100

Table XIX

Card //18 (and repeated for each line in the menu)

Common - MACRO

Format Statement (9X.4I2)

Variable Purpose
Example
Initial Value Card Col Format

MACEXP the ordered numbers
of each feature
data base repre-
sented by this
line in the menu

01 10-17 412

101

APPENDIX III

GDD OPERATING PROCEDURES

OPERATING INSTRUCTIONS

The following three tapes are needed to run the GDD:

DHL 019 - contains core image of GDD for the 1-70

DHL 004 - contains core image of GDD for the 1-4

DHL 018 - output of SETUP program to initialize the 1-4

Initialize both machines and start at address X'108'. Be

sure the RAMTEK is on and plugged in the following manner:

MENU
MONITOR
INPUT

DISPLAY
MONITOR

CHANNEL SUBCHANNEL INPUT

0 1 R

0 2 G

0 3 B

1 1,0

1 2,0

1 3,0

R

G

B

The system tapes can now be loaded using the COREDP program.

The following sequences are necessary: (computer responses are

underlined)

1-70 1-4

Load DHL 019 on drive 85 Load DHL 004 on drive 95

AS 0685 AS 0195

ST 2E00 RW DE

LOAD OR STORE BI DC00

L0 LO DE

DEVICE NUMBER ST DC00

06

102

1-70 (cont'd) 1-4 (cont'd)

START,END LOAD OR STORE

0080, 8000 LO

EOJ DEVICE NUMBER

01

START,END

0080, FFFE

EOJ

Now load DHL 018, the SETUP output tape, on drive 85 on

the 1-4. Start the 1-70 with the following command:

ST 3000

Then start the 1-4 by issuing :

ST 2E00

Both machines should type MPV2.3 followed by the word SYSINIT on

the 1-4. The map should then appear on the display screen. When

the entire map is displayed, both machines will cycle with the

display panel lights blinking, indicating they are idling waiting

for messages.

Once the display has appeared, the operator can zoom,

translate, use the menu, or select modes as described in Section II.

103

APPENDIX IV

COMMONS

INTRODUCTION

The GDD has 13 labeled common blocks. The variables are

grouped in blocks according to function - variables relating to

a specific aspect of the system are in one common block. Nine

of the thirteen blocks contain only static variables which retain

their initial values throughout the operation of the GDD. The

other four either contain system status information or are used

for intermodule communication. The discussion below will center

on these dynamic commons; the Information in the static commons is

briefly stated at the end.

COMMONS

The use of the COMMUN common to provide intermodule com-

munication has been discussed in Section V. The use of SELECT

and DELETE arrays of the COMMUN common is restated in Table XX.

What has not been stated before is the relationship between a

feature data base and an entry in the SELECT and DELETE arrays or

any of the arrays in the DATSTA or DATBAS commons. Previously,

only the "proper entry" has been referred to. The answer is

simple and relates to any variable array containing information

about the set of feature data bases: when the system is initialized

data is read from cards describing the size and location of each

feature data base. The order in which the description of the

data base is read is the order in which it appears in the common

arrays. The first feature read in becomes feature number one,

and the first entry in all arrays pertaining to the feature data

bases is assigned to feature number one. For example, in the case

104

of the COMMUN common, if the river data base is to be displayed

at level one and is currently displayed at level two, DELETE(2)

is set non-zero and SELECT(2) is set to one. Assuming the river

feature was the seaond feature described by the cards at initializa-

tion time, the current river neighborhood will be erased and a

new one retrieved from detail level 1.

CURSTA is another dynamic common briefly discussed in Section

V. It contains the current and previous status of the display

window - center point, extent, cursor position and mode. Table

XXI lists the CURSTA variables and their meaning. All variables

of the CURSTA common except MODE are only altered by the CURSTA

subroutine of the Data Exception module when it receives a message

from the Function Request module. This message contains not

only the new center point and scale, but also previous values.

All values are stored in the CURSTA common. The variable MODE

indicates whether the system is in automatic, normal or special

mode and is only changed by the three routines in the Mode module.

DATSTA is another status common. It contains the status of

each data base currently displayed. Table XXII lists the variables

and the meaning of the DATSTA common. CURLEV and COL are modified

only by the Data Base Management module, GX and GY by the Data

Exception and the Data Base Management module and AUTOFS by the

Menu module and Data Exception module.

The final dynamic common is ERASE. This common contains all

variables needed to erase a column or set of columns from the

display screen. Table XXIII defines the variables in this common.

STATIC COMMONS

The static commons contain constants defined when the system

is initialized. No variable in the common is altered after

initialization. The purpose of each of the nine static common

105

blocks is self-evident from Table XXIV through Table XXXII which define

the variables in each common. Only the MACRO common needs elu-

cidation.

The MACRO common contains all the variables necessary for

identifying which feature has been selected from the menu by

the user and expanding this feature into as many as four different

data bases. For example, the menu could contain separate entries

for coastline and political boundaries; each could be turned

on or off separately; or, either in addition to or in place of

those two entries, an entry called "boundaries" could appear

in the menu. If "boundaries" were selected it would be expanded

into the two data bases, coastlines and political boundaries.

This expansion would be done by first examining MACNUM to deter-

mine how many data bases are represented by the feature selected

from the menu. In this case, it is two. The first two entries

in MACEXP for the menu feature selected are the ordered numbers

assigned at initialization time to political and coastline

boundaries. These numbers are used as the indices of the SELECT

and DELETE arrays of the COMMUN common to request an operation

on these data bases. It should be noted that the index into

MACNUM and MACEXP is the position of the selected feature on the

display screen.

106

Table XX

COMMUN COMMON

VARIABLE

SELECT(10)

TYPE

I

DELETE(10)

MEANING

Intermodule communication identifying
which data bases have been selected
for display either by the menu or
automatic zoom thresholds.
0 - data base is not to be displayed
1-4 detail level at which data base
should be displayed.

Intermodule communication identifying
which currently displayed data bases
should be deleted either because of
menu deletion or automatic zoom
thresholds.
0 - if not to be deleted
1 - if to be deleted.

107

Table XXI

CURSTA COMMON

VARIABLE TYPE

MODE I

XCENM

YCENM

OXCEN

OYCEN

XEXTNT

YEXTNT

OXXTNT

OYXTNT

XCURA

YCURA

OXCURA

R

R

R

R

MEANING

Identifies the mode of the system
1 = Automatic
2 = Normal
3 = Special

X-coordinate of map center in projected
map coordinates

Y-coordinate of map center in projected
map coordinates

Value of XCENM prior to last translate
or zoom

Value of YCENM prior to last translate
or zoom

Current extent of displayed map in
X direction given in map units per
dot on screen

Current extent of displayed map in
Y direction given in map units per
lines on the screen

Value of XEXTNT prior to last zoom or
translate

Value of YEXTNT prior to last zoom or
translate

X position of cursor in absolute
device coordinates (0-479)

Y position of cursor in absolute
device coordinates (0-511)

Value of XCURA prior to last zoom or
translate

108

VARIABLE

OYCURA

XCURM

YCURM

OXCURM

OYCURM

Table XXI (concluded)

TYPE MEANING

R

R

R

R

R

Value of YCURA prior to last zoom or
translate

X cursor position in map coordinate
system

Y cursor position in map coordinate
system

Value of XCURM prior to last zoom or
translate

Value of YCURM prior to last zoom or
translate

109

VARIABLE TYPE

CURLEV(IO) I

AUTOFS(IO) I

GX(IO)

GY(IO)

COL(4,10)

Table XXII

DATSTA COMMON

MEANING

The current detail level at which
each feature data base is displayed.
0 - not displayed
1-4 current displayed detail level

0 - if feature not currently selected
for display by menu or automatic mode.
1 - if feature currently selected for
display by menu or automatic mode.
If AUTOFS = 1 for a feature the
feature is not necessarily displayed;
this is still a function of the extent
thresholds for that feature. It does
mean that if in normal mode and AUTOFS
= 1, the feature will be displayed
when scale is within the thresholds.

X-coordinate of grid point which
defines center of the current neigh-
borhood of blocks. If a detail level
is divided into N blocks in the X
direction, GX for a data base ranges
from 2 to N-2 depending on which line
of the grid the center point of the
displayed map is nearest.

Y-coordinate of grid point which
defines center of the current neigh-
borhood of blocks. If a detail level
is divided into N blocks in the Y
direction, GY for that data base ranges
from 2 to N-2 depending on which vertex
of the grid the center point of the
displayed map is nearest.

For each displayed feature, COL contains
the block numbers of the four blocks
of the neighborhood which are at the
top of the columns of the neighborhood.
The blocks are numbered in row order.

110

Table XXII (concluded)

VARIABLE TYPE MEANING

, . COL holds these block numbers in their
COL (cont d) order ±n the neighborhood from left

to right. A value of 0 indicates that
a column in that position contains no
data. If a feature is not displayed,
COL for that feature is 0.

Ill

Table XXIII

ERASE COMMON

VARIABLE TYPE MEANING

ERSAR(2,40) A Contains a list of the 8-character
PALLET names of the columns of neigh-
borhoods that need to be erased from
the display. A name consists of the
4 character feature name in the
variable PREFIX and the four byte
column number in the variable COL.

ICNT I Counts the number of entries currently
in ERSAR.

ERSIZE I Maximum size of the ERSAR array.

112

VARIABLE

RED

TYPE

I

YELLOW I

GREEN I

BLACK I

Table XXIV

COLORS COMMON

MEANING

Value needed to produce red on the
RAMTEK for standard plugging given
in Appendix III.

Same as above for yellow

Same as above for green

Value is 0 to produce black.

113

Table XXV

DATBAS COMMON

VARIABLE

PREFIX(IO)

NUMLEV(IO)

INMENU(IO)

ZMOTHR(4,10)

ZMINTH(4,10)

D(4,10)

NUMX(4,10)

NUMY(4,10)

IFILE(4,10)

DBINDX(4,10)

TYPE

A

I

I

MEANING

Contains the 4-character feature name
to be used in constructing PALLET
names of displayed images.

Number of detail levels in each feature.

1 - feature is listed in the menu
0 - feature is not listed in the menu
but is included in the macro expansion
of some other listing in the menu.

The X extent values at which, when
zooming out, the detail level of a
feature should be changed.

The X extent values at which, when
zooming in, the detail levels of a
feature should be displayed or changed.

The width in map units in the X direction
of a single block of each of the
possible detail levels of a feature.

Number of blocks in X direction into
which each of the four possible detail
levels of a feature is divided.

Number of blocks in Y direction into
which each of the four possible detail
levels of a feature is divided.

Decimal drum file number for the data
base file of each of the four possible
detail levels of a feature.

Drum file number for each of the index
files of the four possible detail
levels of a feature.

114

VARIABLE

ITYPE(4,10)

ICOLOR(4,10)

Table XXV (concluded)

TYPE MEANING

NUMB

Data base type as defined by PALLET
1 = point data base
2 = line data base

Color with which each of the four
possible detail levels of a feature
should be displayed. Value is de-
termined by the RAMTEK plugging as
explained in Appendix III.

Actual number of feature data bases
available to the system up to a
maximum of 10.

115

Table XXVI

FAC COMMON

VARIABLE TYPE MEANING

ZOOMIN R Factor with which the old extent must
be multiplied to give new extent
after a zoom in.

ZOOMOT R Factor with which the old extent must
be multiplied to give new extent
after a zoom out.

116

Table XXVII

FILE COMMON

VARIABLE TYPE MEANING

MFILE I Decimal drum file number of file to
be used by PALLET for storage of
image definitions.

117

Table XXVIII

VARIABLE TYPE

MACNUM(IO) I

MACEXP(10,4) I

FETPOS(IO) I

POSFET(IO) I

NUMFET

MACRO COMMON

MEANING

Number of data bases in the macro
expansion of each line of the menu
list. There are a total of 10 possible
lines in the menu. Thece is a maximum
of 4 features in a macro expansion.

For each of the lines in the menu list,
MACEXP contains the index of the
feature data bases represented by that
line. The actual number of features
for each line is determined by MACNUM.
The index for a feature in the macro
expansion is the order in which the
the data bases are defined during
initialization.

For each line on the screen, the value
of FETPOS gives the proper index into
MACNUM and MACEXP. (The line numbers
on the screen do not directly give
the index since there are several
title lines in the menu.)

For a given feature, POSFET contains
the line of the menu on the screen
which represents that feature. It is
in a sense the reverse of FETPOS.
POSFET goes from feature to screen,
FETPOS goes from screen to macro
index.

Number of lines in the menu list
of features.

118

Table XXIX

MAP COMMON

VARIABLE TYPE MEANING

MX1 R X coordinate of the lower left corner
of the map area in projected map
coordinates.

MY1 R Y coordinate of the lower left corner
of the map area in projected map
coordinates.

MX2 R X coordinate of the upper right corner
of the map area in projected map
coordinates.

MY2 R Y coordinate of the upper right corner
of the map area in projected map
coordinates.

119

VARIABLE TYPE

MENU I

ONXC

ONRXC

OFFXC

R

R

Table XXX

MENCON COMMON

MEANING

0 - if menu is not currently displayed
1 - if menu is currently displayed

X coordinate of left margin of ON
column of the menu*

X coordinate of the right margin of ON
column of the menu*

X coordinate of left margin of OFF
column in menu*

OFFRXC

MENNME(2) A

STATUS(2) A

SYSTAT(2) A

SYSRES(2) A

STATY

RESYC

RLEFT

R

R

X coordinate of the right margin of
OFF column in menu*

8-character PALLET name of menu image

8-character PALLET name of status
image

8-character PALLET name of status
character string

8-character PALLET name of system
response character string

Y coordinate of location of status
message in menu*

Y coordinate of location of response
message in menu*

X coordinate of start of both status
and response message*

Defined in terms of menu coordinate system - lower left(0,0) and
upper right (511,479).

120

Table XXXI

MNUTIA COMMON

(constant variables used only to make code more readable)

VARIABLE TYPE MEANING

ON 1

OFF 0

YES 1

NO 0

UP 1

PASS -1

AUTON 1

AUTOF 2

STATIC 3

121

VARIABLE

MAPTRE

MENTRE

WORLD(2)

AONBUT

STABUT

RMAP(2)

TYPE

I

ZINBUT I

TRNBUT I

SLCTBT I

AUFBUT I

ZOTBUT I

MENBUT I

A

Table XXXII

TREES COMMON

MEANING

PALLET device number on which map is
displayed

PALLET device number on which menu is
displayed

8-character PALLET name of tree node
to which map is attached

RAMTEK function key for zooming in

RAMTEK function key for translating

RAMTEK function key for menu selection

RAMTEK function key for selecting
normal mode

RAMTEK function key for zooming out

RAMTEK function key for requesting and
entering menu

RAMTEK function key for selecting
automatic mode

RAMTEK function key for selecting
static mode

8-character PALLET name of image
containing map data

122

APPENDIX V

PROGRAM SUMMARY SHEETS

123

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: AS1 M) 2) MODULE: INITIALIZATIONS) MACHINE: 1-4

4) CALLING STATEMENT:

NA

5) ARGUMENTS:

NA

6) CALLED BY:
NA

TTCALLS ROUTINES:

NA
8) COMMONS-REFERENCED:

NA
9JPURP0SE AND METHOD:

ABIND is a dummy routine used during linking to account for entry points
called by Pallet but not needed by the GDD. By not including these
Pallet routines core was saved.

124

6 D D

PROGRAM SUMMARY SHEET

1) ROUTINE: ALLOC 2) MODULE: DATA BASE 3) MACHINE: 1-4
DEALOC MANAGEMENT

4) CALLING STATEMENT:

CALL ALLOC(INDEX,IPNT,NONE)

5) ARGUMENTS:INDEX - the unpacked index for the neighborhood to be retriever
IPNT - returned pointer to allocated core block ; NONE - returned flag in-
dicating empty neighborhood

6) CALLED BY:

SETINX

7TCALLS ROUTINES:
NA

8) COMMONS REFERENCED:

NA

9) PURPOSE AND METHOD:

ALLOC allocates a core buffer large enough to hold the longest column of
the neighborhood being retrieved. DEALOC deallocates the currently al-
located buffer. ALLOC compares the lengths of the four columns of the
neighborhood to determine which is longer. Since the length is the number
of points in the column, the buffer must be 8 bytes times this length. If
the neighborhood is empty, NONE is set to indicate a buffer was not allo-
cated. The total length of the buffer allocated is the buffer for the
points plus the length of a Pallet image and a Pallet item header. This
space is reserved with an SVC 7. IPNT points to the address in the buffer
into which the data should be read.

125

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: ATOFFS 2) MODULE: MODE 3) MACHINE: 1-4

4) CALLING STATEMENT:

CALL ATOFFS(MSG)
5) ARGUMENTS!

MSG - 8 element cursor status array sent by Pallet.

6) CALLED BY:

Pallet when normal function key is hit
7) CALLS ROUTINES:

NA

8) COMMONS~REFERENCED:

CURSTA, MNUTIA

9) PURPOSE AND METHOD":

ATOFFS sets the MODE variable in the CURSTA common to indicate that the
system is in NORMAL mode.

126

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: AUTOF? 2) MODULE: DATA 3) MACHINE: X_A
EXCEPTION

4) CALLING STATEMENtT
CALL AUTOFZ

5) ARGUMENTS":
NA

6) CALLED BY:

ZMTRNS

7TTALLS ROUTINES:

CLEVEL

8) COMMONS REFERENCED:

COMMUN, DATBAS, DATSTA, MNUTIA

9) PURPOSE AND" METHOD:

AUTOFZ determines which features should be displayed, deleted or have a
change of detail level after a zoom when the system is in normal mode. For
each data base available to the system that has been selected by the user,
CLEVEL is called to determine the detail level at which it should be dis-
played. If this level is different from the current level SELECT is set
equal to this level and the DELETE flag is turned on.

127

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: AUTONS 2) MODULE: MODE 3) MACHINE: 1-4

4) CALLING STATEMENT:

CALL AUTONS(MSG)
5) ARGUMENTS:

MSG - 8 element cursor status array sent by Pallet

6) CALLED BY:
Pallet when the automatic function key is hit

7) CALLS ROUTINES:

NA
8) C0MMQNS~RETERENCED:

CURSTA, MNUTIA
9) PURPOSE AND METHOD":

AUTONS sets the system mode to automatic by changing the MODE variable.

128

G D D

PROGRAM SUMMARY SHEET

1} ROUTINE: AUTONZ 2) MODULE: DATA 3) MACHINE: 1-4
EXCEPTION

4) CALLING STATEMENT:

CALL AUTONZ

5) ARGUMENTS:

NA

6) CALLED BY:

ZMTRNS

7) CALLS ROUTINES:
CLEVEL

" 8) COMMONS REFERENCED:

COMMUN, DATBAS, DATSTA, MNUTIA

9) PURPOSE AND METHOD":

AUTONZ determines which data bases should be displayed, deleted or have a
detail level change after a zoom when the system is in automatic mode. For
each data base available to the system, CLEVEL is called to determine the
proper detail level. If the returned level is not the current level, SELECT
is set equal to the returned level, and the DELETE flag is turned on. In
addition the AUTOFS flag for that data base is turned on indicating that
it is to be considered a user selected data base if the mode is changed to
normal.

129

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: CLEVEL
2) MODULE: MENU 3) MACHINE: 1-4

DATA EXCEPTION

4) CALLING STATEMENT:
CALL CLEVEL(I, LEVEL)

5) ARGUMENTS: I - index into data bases .
LEVEL - returns level at which data base should be displayed

6) CALLED BY: HESLCT of ^^ module ; AUTONZ, AUTOFZ, of DATA EXCEPTION
module

7) CALLS ROUTINES:

_NA
8) COMMONS"REFERENCED:

CURSTA, DATBAS, DATSTA, MNUTIA

9) PURPOSE AND METHOD":

For the current displayed extent, CLEVEL determines the detail level at
which the Ith data base should be displayed. LEVEL is set to 0 on entry.
If the current extent is not within range CLEVEL returns. If a data base
has only one level of detail and falls within range of both the zoom out
and zoom in thresholds for that level LEVEL = 1 and CLEVEL returns. The
old and new extent values are compared to determine whether a zoom in or
zoom out has been done. If a zoom in was done, CLEVEL loops through the
zoom in threshold values in order until it finds the level whose threshold
is greater than the current extent. LEVEL = 0 if none are greater. For
a zoom out, the zoom out thresholds are examined in reverse order starting
with the highest detail level. LEVEL is set to the first detail level
whose threshold is less than the current extent.

130

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: CHARLV 2) MODULE: MENU 3) MACHINE: 1-4

4) CALLING STATEMENT:

CALL CHARLV(I,ICHAR)

5) ARGUMENTS :T-fp-n-,irp data base index .ICHAR - a 2 character string returned
by CHARLV

6) CALLED BY:

MENUUP, MESLCT

7) CALLS ROUTINES:
NA

8) COMMONS REFERENCED:

COMMUN, DATBAS, DATSTA, MNUTIA

9) PURPOSE AND METHOD:

For a given data base, CHARLV returns a two character string representing
the number of the detail level at which the Ith data base is currently
displayed, or will be displayed when the menu is entered.

131

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: CLMERS 2) MODULE: DATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:

CALL CLMERS(I,ISTART,IEND)

5) ARGUMENTS:! - A*ra hagP inHpy.ISTART - first column of neighborhood tc

be erased(l,2,3 or 4) ;IEND - last column of neighborhood to be erased (1,2,3
or 4)

6) CALLED BY:

MDISP, RPCOL

7) CALI
NAMEToT

CALLS ROUTINES:
TGDD EHASE of Pallet

8) COMMONS REFERENCED:

DATBAS, DATSTA, ERASE,TREES

9) PURPOSE AND METHOD:

CLMERS enters the Pallet names of columns of neighborhoods to be erased into
the ERSAR array. If the ERSAR array is filled, CLMERS calls Pallet to
erase the entries already made. For the data base specified by I, CLMERS
constructs the name of any or all columns of the data base and enters them
into the ERSAR array. Which columns are entered is determined by ISTART
and IEND. There are four columns in a neighborhood; the block number of
the head of each column is stored in the COL array in order from left to
right. The range of values for ISTART and IEND is 1 to 4. All columns of
a neighborhood between and inclusive of ISTART and IEND are erased. If
the column represented by an element of the COL array is erased, that
element of COL is set to 0.

132

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: CRTOMP 2) MODULE: FUNCTION 3) MACHINE: 1-70
REQUEST

~4) CALLING STATEMENT:

CALL CRTOMP(XCURA, YCURA, XCURM, YCURM)

5) ARGUMENTS:XCURA _ x absolute position of cursor: YCURA - v absolute
position of cursor; XCURM, YCURM - returned map coordinates of cursor.

6) CALLED~BYl

SETMSG
7) CALLS ROUTINES:

NA
8) COMMONS-REFERENCED:

STATUS
9) PURPOSE AND METHOD"!

CRTOMP translates the absolute position of the cursor on the screen to
its position on the displayed map in the map coordinate system. It cal-
culates the distance the cursor is from the absolute center of the display.
This distance is scaled by the previous extent value and added to the
previous center point. (The previous extent and center are used since the
cursor was positioned by the user before the translate or scale he requested
was done.)

133

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: CURPOS 2) MODULE: MENU 3) MACHINE: 1-4

4) CALLING STATEMENT:

CALL CURPOS(IX, IY, IDB, IACT)

5) ARGUMENTS: IX- ^-position of cursor in absolute coordinates:IY-Y-position
of cursor in absolute coordinates; IDB-macro expansion index returned by
CURPOS; lACT-function returned by CURPOS

6) CALLED~B7:

MESLCT

~7) CALLS ROUTINES:

NA

8) COMMONS REFERENCED:

MACRO, MENCON, MNUTIA

9) PURPOSE AND METHOD:

CURPOS determines which line of the menu the cursor is opposite and returns
this in IDB; it also determines which function the cursor is under and re-
turns this in IACT. To find out which line the cursor is opposite, the
top and bottom coordinates of each line are compared to IY. The line into
which IY falls becomes the index into the FETPOS array. For each line on
the screen FETPOS contains the index into the macro expansion arrays. IDB
is set equal to this index. To determine which function the cursor is under
IX is compared to the x-coordinates of the left and right side of each
column. If IX does not fall into a column, IACT • -1. Otherwise it
equals ON or OFF.

13A

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: CURSTA 2) MODULE: DATA 3) MACHINE: 1-4
EXCEPTION

4) CALLING STATEMENT":

CALL CURSTA(NAME,TYPE,LENGTH,STAT)

5) ARGUMENTS: NAME.TYPE,LENGTH - name of routine to receive the message,
type of message and length of message in bytes.
STAT - current display status array

6) CALLED BY:

TRANTP, ZOMTOP via MP

7) CALLS ROUTINES:

ZMTRNS
8) COMMONS REFERENCED:

CURSTA
9) PURPOSE AND METHOD:

CURSTA copies the new current display status array sent by the Function
Request module into the CURSTA common. Thus, both the 1-4 and 1-70 now
have the current values for the center point and extent. After copying the
new values, CURSTA calls ZMTRNS to test for data exception conditions caused
by either a translate or zoom.

135

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: E3MSG 2) MODULE: DATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:
CALL(MSG,LEN,NUM)

5) ARGUMENTS: MSG - message to be printed; LEN - number of characters in
message; NUM - integer to be printed with message

6) CALLED BY:
RETREV.MSEND

7) CALLS ROUTINES:

NA
8) COMMONS REFERENCED:

9) PURPOSE AND METHOD:

ERMSG prints error messages to the teletype. MSG is moved to an output
buffer. NUM is converted to ASCII and also stored in the output buffer.
The buffer is printed by an SVC call.

136

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: GRDCEN 2) MODULE:DATA EXCEPTION 3) MACHINE: t.
 DATA BASE

MANAGEMENT

4) CALLING STATEMENT:

CALL GRDCEN(I,LEV,NGX.NGY)

5) ARGUMENTS: I - data baseindex
LEV - level for which neighborhood is being defined
NGX.NGY - coordinates of grid point closest to center point of display.

6) CALLED BY: MTRANS in DATA EXCEPTION
MDISP in DATA BASE MANAGEMENT

7) CALLS ROUTINES:

NA
8) COMMONSHREFERENCED:

CURSTA, DATBAS, DATSTA, MAP

9) PURPOSE AND METHODi

GRDCEN calculates the grid point of a given data base at a given level that
is closest to the center point of the display. The X and Y coordinates of
the grid point are calculated in a similar manner: for a given data base
and level, the width of the blocks into which it is divided is known. The
required grid point is the grid point that is no more than half this dis-
tance away from the center point. So, the distance between the edge of
the entire map and the center point is calculated and then increased by half
a block width. This quantity is divided by a block width. The correct
coordinate is the quotient; forget the remainder. The coordinate is then
checked to be sure it is no less than 2 blocks from an edge. If it is,
it is changed so that the neighborhood it defines does not fall outside
the mapped area.

137

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: IMPTAB 2) MODULE INITIALIZATION 3) MACHINE: 1-70
1-4

4) CALLING STATEMENT: "~

NA

5) ARGUMENT?:

NA

6) CALLED BY": "
IMPINT of MP

7) CALLS ROUTINES:

NA
8) COMMONS REFERENCED:

NA

9) PURPOSE AND METHOD:

IMPTAB is the table which tells MP which routines are to receive which
message types. There are two such tables for the GDD; one to be linked on
the 70 and one to be linked on the 4.

138

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: INIT 2) MODULE:INITIALIZATION 3) MACHINE: 1-4

4) CALLING STATEMENT:

NA

5) ARGUMENT?:

NA

b) CALLED BY: operating system start command as the entry point into the
GDD

7) CALLS ROUTINES:RF.nr.oM, MDISP of GDD; DRMBFA, ON, CLEAR, DISPLAY, FIND of
Pallet; IMPINT, SEND, MP of MP; SETSAV, CHKSAV, INTFMP of FMP

8) COMMONS REFERENCED: COLORS, COMMUN, CURSTA, DATBAS, DATSTA, ERASE, FAC.
FILE, MACRO, MAP, MENCON, MNUTIA, TREES

9) PURPOSE AND METHOD:

INIT initializes Pallet, MP and FMP. Using the Pallet ON routine it assigns
function buttons to the routines that should be invoked when that button is
pushed. It sends a message containing the initial center point and extent,
magnification factors and image names to the STATIN routine residing on the
1-70 to initialize that side of the GDD. It then displays an empty "world"
image to set the proper coordinate system in Pallet, sets the current pointer,
and calls MDISP to display the initial data bases specified by the initial
value of the COMMUN common. Finally MP is called to wait for messages.

139

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: INMVE 2) MODULE: DATA 3ASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:

CALL I.IMVECBUFdPOS) , INDEX)

5) ARGUMENTS:BUF (IPOS) Pointer to index entry read from drum:
INDEX returned unpacked index entries

6) CALLED BY:
RINDEX

TTCALLS ROUTINES:
NA

8) COMMONS~REFERENCED:

NA

9) PURPOSE AND METHOD:

INMVE unpacks four index entries as they are stored on drum into a FORTRAN
integer array. For each index entry, a halfword containing the drum address
and a halfword containing the length are required. These are packed into
a fullword on drum. INMVE unpacks each halfword into a FORTRAN integer.

140

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: MDiSp 2) MODULE: DATA BASE 3} MACHINE:
MANAGEMENT

1-4

4) CALLING STATEMENT:

CALL MDISP(IFORCE)

5) ARGUMENTS:

IFORCE - initially 0; returned as a 1 if MDISP has changed the display

6) CALLED BY: MENUUP 0f MENU module;
ZMTRNS.MTRANS of DATA EXCEPTION module,INIT of INITIALIZATION module

7) CALLS ROUTINES! CLMERS, GRDCEN, SETINX, REDSND, DEALOC of GDD,
ERASE of Pallet

~8) C0MM0NS~RETERENCED:

COMMUN, DATBAS, DATSTA, ERASE, MNUTIA, TREES

9) PURPOSE AND METHOD:

MDISP erases and displays neighborhoods of feature data bases as dictated
by settings of the SELECT and DELETE arrays. MDISP first runs through
the DELETE array and makes an entry in the ERSAR array for each column of
each neighborhood that is flagged for deletion. Pallet is then called to
erase the data from the display tree. Now the SELECT array is examined.
Each non-zero entry in the SELECT array is the level at which a data base
should be displayed. ORDCEN calculates the grid center of the neighbor-
hood. SETINX reads the index for the neighborhood. For each column, REDSND
is called to read the column of data from drum and send it to Pallet.

141

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: DBPos 2) MODULE: MENU 3) MACHINE: r_4

4) CALLING STATEMENT:
CALL DBPOS(I,Y)

5) ARGUMENTS: i - data base index

Y - returned value of Y coordinate of the Itn data base in
menu.

6) CALLED BY:

MENUUP, WRTCHR

TTCALLS ROUTINES:

NA
8) C0KM0NS~RETERENCED:

DATBAS, MACRO, MNUTIA

9) PURPOSE AND METHOD:

Given a specific data base, the Ith data base, DBPOS returns the Y coordin-
ate in the map coordinate system, of the line in the menu that represents
that data base. The array POSFET has,for each data base,the line number of
that feature data base on the screen. By multiplying this line number by
24 (24 dots in the Y axis of a character matrix) and subtracting it from
480 (the Y coordinate of the top of the screen) the Y coordinate of the
line of the feature data base is calculated.

142

GOD

PROGRAM SUMMARY SHEET

1) ROUTINE: MENUUP 2) MODULE: MENU 3) MACHINE: i-A

4) CALLING STATEMENT:

MENUUP(MSG)

5) ARGUMENTS: MSG _ eight eiement cursor status array sent by Pallet when
a routine is invoked by a Pallet ON condition.

6) CALLED W:
Pallet ON condition when menu function key is hit.
7) CALLS ROUTINES: CHARLV, DEPPS, NAME, CHAR, SETSTA.MDISP of GDP; DISPLY.
OPENI, CHAR, CLEAR, REFRSH of Pallet

8) COMMONS REFERENCED: COLORS, CURSTA, DATBAS, DATSTA, MENCON, MNUTIA,TREES

9) PURPOSE AND METHOD:
MENUUP displays the menu image and creates and displays an image telling
the status of the system and feature data bases. If the menu is already
being displayed when MENUUP is invoked, the MDISP routine is called to
process the user's menu requests.

143

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: MESLCT 2) MODULE: MENU 3) MACHINE: 1-4

4) CALLING STATEMENT:
CALL MESLCT(MSG)

5) ARGUMENTS:MSG - eight element cursor status array sent by Pallet when
a routine is invoked by a Pallet ON condition.

6) CALLED BY:
Pallet ON condition when select function button is hit

7) CALLS ROUTINES:

CURPOS, RESPON, SETCHR, CLEVEL, CHARLV
~8) COMMONS~REFERENCED:

COLORS, COMMUN, DATBAS, DATSTA, MACRO, MENCON,
MNUTIA

9) PURPOSE AND METHOD":

MESLCT determines which feature in the menu has been selected by the user.
It determines which function was requested and, after testing for error
conditions, makes the proper entries into the SELECT and DELETE arrays of
the COMMUN common. The CURPOS routine is first called to calculate the
feature and function requested. An error message is displayed if the
cursor is not properly aligned with one or the other. The feature is ex-
panded to a list of features via the macro capability. In the case of an
ON function, for each feature in the expansion, CLEVEL is called to cal-
culate the proper detail level for the current extent. This is placed in
the SELECT array. In the case of an OFF function, error conditions are
checked, and DELETE set non-zero for each feature in the macro expansion.

144

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: MSEND 2) MODULE: DATA BASE 3) MACHINE: I-A
MANAGEMENT

4) CALLING STATEMENT:

CALL MSEND(NAME,P,TYPE,BUF,LENGTH,ERROR)

5) ARGUMENTS: NAME-name of routine to receive msg; P-priority of msg
TYPE-message type; BUF-address of msg; LENGTH-length of col. of data
ERROR-MP error return code

6) CALLED BY:
REDSND

TTCALLS ROUTINES:

SEND of MP ERMSG of Pallet
8) COMMONS REFERENCED:

NA

9) PURPOSE AND METHOD"!

MSEND sets up the calling sequence to MP and calls MP. It is written in
assembly to allow the proper calculation of the length of the buffer con-
taining a column of data. The NAME, PRIORITY, TYPE, BUFFER address are
copied into the SEND parameter block. The length of the message is then
calculated from the index entry for the column being sent and the length
of the headers. SEND is then called and error conditions tested for.

145

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: MTRANS 2) MODULE: DATA 3) MACHINE: I-A
EXCEPTION

4) CALLING STATEMENT:

CALL MTRANS(IFORCE)

' ' IFORCE - initially set to 0, it is set to 1 by the routine
MDISP if the display has been changed.

6) CALLED BY:
ZMTRNS

7) CALLS ROUTINES:

GRDCEN, MDISP, RPCOL
8) COMMONSREFERENCED:

COMMUN, DATBAS, DATSTA, MNUTIA
9) PURPOSE AND METHOD:

MTRANS determines which data bases need a new neighborhood due to a
translation of the center point. It either calls for the replacement of
an entire neighborhood or simply one or two columns of the neighborhood.
For each data base that is currently displayed, GRDCEN is called to de-
termine the (X,Y) coordinates of the grid point closest to the center point.
These X,Y coordinates are compared to the old value. If the Y coordinates
are different, SELECT is set equal to the current level and the DELETE flag
turned on to force a neighborhood change. If only the X coordinate is
different RPCOL is called to change only one or two columns of the
neighborhood.

146

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: NAME 2) MODULE: mm 3) MACHINE: 1-4
DATA BASE MANAGEMENT

4) CALLING STATEMENT:-

CALL NAME(FIRST, SEC,RNAME)

5) ARGUMENTS
FIRST - 1st four characters of name
SEC - 2nd four characters of name
RNAME - 8 character name returned

6) CALLED BY: MENUUP, WRTCHR of MENU module; CLMERS, REDSND of DBM module

7) CALLS ROUTINES:

NA
8) C0MM0NS~RETERENCED:

NA

9) PURPOSE AND METHOD:

NAME constructs an 8-character Pallet name from two four character strings.
The two strings are simply concatenated and returned in the RNAME argument
which must be of dimension 2 in the calling program.

147

G D 0

PROGRAM SUMMARY SHEET

1) ROUTINE: NEWCEN 2) MODULE: FUNCTION 3) MACHINE: 1-70
REQUEST

4) CALLING STATEMENT"!

CALL NEWCEN(FAC,OXCENM, OYCENM, XCENM, YCENM)

5) ARGUMENTS f AC - magnification factor :

OXCENM,OYCENM - previous center of map in map coordinates
XCENM,YCENM - returned new center in map coordinates

6) CALLED BY:
ZOMTOP

7) CALLS ROUTINES:

NA

~Wj COMMONS REFERENCED:

STATUS

9) PURPOSE AND METHOD:

NEWCEN calculates the new center of the displayed map when a zoom is re-
quested. Since the point designated by the cursor remains stationary
when a zoom is done, there is an implied translate in any zoom. The new
center is calculated as the difference between the cursor position in map
coordinates and the difference between the cursor position and old center
point multiplied by the magnification factor, i.e., XCUKM - (XCURM - OXCENM)
*FAC

148

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: REDCOM 2) MODULE: INITIALIZATIONS) MACHINE: 1-4

4) CALLING STATEMENT:

CALL REDCOM

5) ARGUMENT?: ~~

NA

6) CALLED BY:

WIT
7) CALLS ROUTINES:

NA
8) COMMONS REFERENCED:

NA

9) PURPOSE AND METHOD:

REDCOM reads the initial values of all common variables into core from the
tape created by the stand alone program, SETUP. It first rewinds the tape
on logical unit 6, and reads a 4 byte record containing the address of the
first common location. This address is then used as a parameter to the
next SVC tape read which reads the next record into core starting at the
address in the first record.

149

GOO

PROGRAM SUMMARY SHEET

1) ROUTINE: REDSND 2) MODULE: DATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:

CALL REDSND(I,LEVEL,INDEX,IPNT,ICOL)

5) ARGUMENTS: 1 - data base index; LEVEL - detail level to be displayed;
INDEX - index data; IPNT - points to core buffer; ICOL - column of neighbor-
hood to be displayed

6) CALLED BY:
MDISP, RPCOL

7) CALLS ROUTINES:

MS END, NAME, RETREV, SETBF, SETITM
"8] COMMONS REFERENCED:

DATBAS, DATSTA, TREES

9) PURPOSE AND METHOD:

REDSND reads a column of data from drum, sets up Pallet headers for the
data and sends it to Pallet. RETREV is called to read the ICOL column
of data into core starting at location IPNT. SETBF and SETITM add
image and item headers required by Pallet to the data. MSEND transmits the
data to the 1-70 using MP.

150

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: RESPON 2) MODULE: MENU 3) MACHINE: i-i,

4) CALLING STATEMENT:
CALL RESPON(ICHAR,LEN,ICOLOi}

5) ARGUMENTS: ICHAR - character string
LEN - length of character string
ICOLOR - color of character string

6) CALLED BY:
MESLCT

7) CALLS ROlJTiTiET:

ERASE. OPENI. CHAR. DISPLY of Pallet
8) COMMONS REFERENCED:

MENCON, MNUTIA, TREES

9) PURPOSE AND METHOD:

RESPON is used to display responses to the user whenever a menu function
has been requested. It first erases the old response image, and then opens
a new one. The ICHAR character string is placed in this image. The
image is then displayed by attaching it to the status image.

151

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: RETREV 2) MODULE: DATA BASE 3) MACHINE: 1-4
MANAGEMENT

TTCALLING STATEMENT:"

CALL RETREV(IFILE,INDEX(I,ICOL),IPNT,NONE)

5) ARGUMENTS:IFILE-data base file number; INDEX(I,ICOL)-index information
for ICOLth column of data base; IPNT-address into which data should' be
read ; NONE-returned flag set non zero if column is empty

6) CALLED BY:

REDSND
7) CALLS ROUTINES:

ERMSG
8) COMMONS"REFERENCED:

NA

9) PURPOSE AND METHOD:

RETREV reads a column of data from drum into core. The block address of
the ICOL column of data is taken from the index and used by the DRUM
utility to find the data on drum. DRUM reads the number of points specified
by the index. Once read, the starting location of the data within the
first block read from the drum is calculated. (The low order four bits of
the length entry in an index entry identifies which point in the drum block
is the first point for the column of data read.) IPNT is returned as this
location minus the 24 byte header required by PALLET . A -1 is stored at the
end of the data as a PALLET delimiter.

152

GOD

PROGRAM SUMMARY SHEET

1) ROUTINE: RINDEX 2) MODULE: DATA BASE 3) MACHINE:1-4
MANAGEMENT

4) CALLING STATEMENT:

CALL RINDEX(I,LFTTOP,LEV,INDEX)

5) ARGUMENTS: I - data base index;LFTTOP - block number of left top block
of neighborhood ; LEV - level at which data base is to be displayed
INDEX - returned index value for neighborhood

6) CALLED BY:
SETINX

7) CALLS ROUTINES:

ERMSG, INMVE of GDP; DRUM - FORTRAN utility
8)C0MM0NS REFERENCED:

DATBAS, DATSTA

9) PURPOSE AND METHOD:

RINDEX reads the index entries for each of the four columns of a neighbor-
hood having LFTTOP as the top left block. Each index entry is a fixed 4
bytes long. The block address in the index file of a specific index entry
is four times LFTTOP divided by 128 bytes per block. In case the entry
wanted is at the very end of the calculated block, over a block is read to
insure all four entries are read into core. The actual byte position in
the block is calculated as an index in a FORTRAN array. INMVE is called
to unpack the index data into a FORTRAN integer array.

153

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: RPCOL 2) MODULE: DATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT"

CALL RPCOL(I,NGX,NGY,IFORCE)

5) ARGUMENTS??"
data base Index; NGX.NGY - coordinates of new grid center

IFORCE - set to 1 if RPCOL changes display

6) CALLED BY:
MTRANS

7) CALLS ROUTINES:
CLMERS, SETINX, REDSND, DEALOC

8) C0MM0NS~RETERENCED:

DATBAS, DATSTA, ERASE, TREES

9) PURPOSE AND METHOD?"

RPCOL erases and displays partial neighborhoods when a translation does not
require an entirely new neighborhood. It first calculates which one or
two columns need to be erased as a function of the difference between the
old and new X grid coordinate. CLMERS make the necessary entries into the
ERSAR array. Next, the entries in the COL atray are rotated to maintain
the left to right order of the columns in the data base. Those elements
of COL cleared by the rotate will be filled by the block numbers of the
new columns and order will be maintained. SETINX is called to retrieve
the index for the new neighborhood. For each column that needs to be
displayed, REDSND reads the data and sends it to Pallet.

154

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: SETBF 2) MODULE: DATA BASE 3) MACHINE: I-4

MANAGEMENT

4) CALLING STATEMENT:-

CALL SETBF(TREE,WHERE,REFRSH,IPNT)

5) ARGUMENTS: TREE _ panet device to which image should' be attached ;

WHERE-name of the node to which image should be attached: REFRSH-refresh type
IPNT-points to where header should be stored.

6) CALLED BY:

REDSND

7) CALLS ROUTINES:
NA

8) COMMONS REFERENCED:

NA
9) PURPOSE AND METHOD^

SETBF creates a Pallet image header for a column of data about to be sent
to Pallet for display. The TREE, WHERE and REFRSH parameters are stored in
order in successive locations starting at address IPNT. IPNT is returned
pointing to the next free location.

155

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: SETINX 2) MODULE: DATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:

CALL SETINX (I,LEVEL,NGX,NGY ,LFTTOP , INDEX, IPNT,NONE)
5) ARGUMENTS: I - data base index; LEVEL - level for display; NGX.NGY - gric
center coordinates, LFTTOP - returned block number of left top block in
neighborhood; IPNT-returned address of core block allocated for data! NONE
returned fla8

6) CALLED BY:

MDISP, RPCOL

7) CALLS ROUTINES:
TOPLFT, RINDEX, ALLOC

8) COMMONS REFERENCED:
NA

9) PURPOSE AND METHOD?"

SETINX sets up the retrieval of a neighborhood of columns from the drum.
It calculates the proper entry into the index, reads the index and then
allocates a core buffer into which a column of data can be read. NOME is set
non-zero if the neighborhood contains no data.

156

6 D D

PROGRAM SUMMARY SHEET

1) ROUTINE: SETITM 2) MODULE: DATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:

CALL SETITM(ITYPE,N,COLOR,NAME,IPNT)
5) ARGUMENTS:ITYPE-data type, 1 points,2 lines; N-number of points In item
COLOR-color of item; NAME-name of ITEM

6) CALLED BY:

REDSND

7) CALLS ROUTINES: •

NA

8) C0MM0NS~RETERENCED:
NA

9) PURPOSE AND METHOD:-

SETITM constructs an item header for a column of data about to be displayed
ITYPE, N, COLOR and NAME are stored in successive locations starting at
location IPNT. This item header immediately follows the image header and
immediately precedes the data itself.

157

GOD

PROGRAM SUMMARY SHEET

1) ROUTINE: SETMSG 2) MODULE FUNCTION 3) MACHINE: 1-70
REQUEST

4) CALLING STATEMENT:

CALL SETMSG(MSC)

5) ARGUMENTS y^ _ g element cursor status array sent by PALLET when

function key is hit.

6) CALLED BY:
ZOMTOP, TRANTP

7) CALLS ROUTINES:
CRTOMP

8) COMMONS REFERENCED:

STATUS

9) PURPOSE AND METHOTT:

SETMSG sets the display status array, CURSTA for shipment to the Data
Exception module. The CURSTA array contains 16 elements, 8 for current
values and 8 for previous values. When called, SETMSG copies the current
values to the previous value locations. The new absolute cursor position
is set in CURSTA, converted to map coordinates and also stored in CURSTA.
(The new center point and extent are set by the ZOMTOP and TRANTP routines
after calling SETMSG.)

158

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: SETSTA 2) MODULE: MENU 3) MACHINE: I-4

4) CALLING STATEMENT:
CALL SETSTA(ICHAR,LEN)

5) ARGUMENTS: ICHAR - character string to be displayed in status line of
menu ; LEN - length of character string

6) CALLED BY:
MENUUP

7) CALLS ROUTINES:

CHAR of Pallet
8) C0MM0NS~RETERENCED:

COLORS, MENCON

9) PURPOSE AND METHOD!

SETSTA enters the character string ICHAR into the status image using the
CHAR command of Pallet.

159

GOD

PROGRAM SUMMARY SHEET

1) ROUTINE: STATCS 2) MODULE: MODE 3) MACHINE: 1-4

4) CALLING STATEMENT:

CALL STATCS (MSG)

5) ARGUMENTS^

MSG - 8 element cursor status array sent by Pallet

6) CALLED BY:

Pallet when special mode function key is hit.
"7) CALLS ROUTINES:

NA
~8) COMMONS REFERENCED:

MNUTIA, CURSTA
9) PURPOSE AND METHOD:

STATCS changes the system mode to special by setting the MODE variable.

160

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: STATIN 2) MODULE;INITIALIZATION 3) MACHINE: !_7o

4) CALLING STATEMENT:
CALL STATIN (NAME, TYPE, LENGTH, STAT>

5) ARGUMENTS: NAME, TYPE. LENGTH - name of routine to receive the message,
type of message and length of message in bytes.
STAT - initial values for the STATUS and DATA commons.

6) CALLED BY:
INIT via MP

7) CALLS ROUTINES:

NA
8) COMMONrREFERENCED:

DATA, STATUS

9) PURPOSE AND METHOD:

STATIN initializes the two commons, DATA and STATUS, that reside on the
1-70. The array STAT is filled with the proper information by INIT, which
sends it via MP to STATIN. STATIN then copies the values received into
the two common areas.

161

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: TOPLFT t) MODULE: DATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:

CALL TOPLFT(I,LEVEL,NGX.NGY.LFTTOP)

5) ARGUMENTS:! - data base index; LEVEL - detail level.of data base
NGX,NGY-grid point center of neighborhood; LFTTOP - returned value of
number of top left block in neighborhood

6) CALLED BY:
SETINX

7) CALLS ROUTINES:

NA

8) C0MM0NS~RETERENCED:

DATBAS, DATSTA

9) PURPOSE AND METHODl

TOPLFT calculates the block number of the top left block of a sixteen block
neighborhood having a grid point center of (NGX,NGY). The block number is
returned as if the blocks were numbered from left to right starting in the
bottom row.

162

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: TRANTP 2) MODULE: FUNCTION

REQUEST

3) MACHINE: I_70

4) CALLING STATEMENT:
CALL TRANTP(MSG)

5) ARGUMENTS":
MSG - 8 element cursor status array sent by Pallet

6) CALLED BY:

Pallet ON condition when translate function key is hit.
TTCALLS ROUTINES:

SETMSG of GDD; TRANS of Pallet; SEND of MP

8) COMMONS REFERENCED:

DATA, STATUS

9) PURPOSE AND METHODl

TRANTP requests an immediate translate of the available neighborhood, sets
the new center of display in the CURSTA array, and sends the CURSTA array
to the Data Exception module.

163

GOD

PROGRAM SUMMARY SHEET

1) ROUTINE: WRTCHR 2) MODULE: MENU 3) MACHINE: I-«

4) CALLING STATEMENT:

CALL WRTCHR(I,X.SECNME, ICHAR, ICOLR)

5) ARGUMENTS:1-index of data base opposite which character is to
be written; X-x coordinate in menu coordinates where character
should appear;SECNME-second halt ot name ol character string;lCHAK-characte
to be written:ICOLR-cplor of character ,

6) CALLED BY:
MESLCT

7) CALLS ROUTINES:

DBPOS, NAME of GDP; OPEN!, CHAR, DISPLY of Pallet
8) COMMONS REFERENCED:

DATBAS, DATSTA, MENCON, MNUTIA, TREES

9) PURPOSE AND METHOD:

WRTCHR writes a two character string to the display opposite the line in
the menu that represents the Ith data base. DBPOS is called and returns
the Y coordinate in the menu coordinate system of the proper line in the
menu. A pallet name for the character string to be written is constructed
by NAME from the PREFIX for the Ith data base and the 4 characters in the
SECNME argument. An image is opened with this name, the ICHAR string
placed in it and displayed.

16 A

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: ZMINTp 2) MODULE: FUNCTION 3) MACHINE: 1-70
REQUEST

4) CALLING STATEMENT:

CALL ZMINTP(MSG)

5) ARGUMENTS: MSQ - 8 element cursor status array sent by Pallet when a
function button is hit.

6) CALLED BY:

Pallet ON condition when zoom in function key is hit.

7) CALLS ROUTINES:
ZOMTOP

8) COMMONS REFERENCED:

DATA

9) PURPOSE AND METHOD:

ZMINTP sets the zoom in magnification factor and calls ZOMTOP to finish
processing the zoom function request.

165

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: ZM0UTP 2) MODULE: FUNCTION 3) MACHINE: I_70
REQUEST

4) CALLING STATEMENT:

CALL ZMOUTP(MSG)

5) ARGUMLNTS: ^SG - 8 element cursor status array sent by Pallet when a

function key is hit.

6) CALLED BY:

Pallet ON condition when zoom out function key is hit.

7) CALLS ROUTINES:
ZOMTOP

8) COMMONS~RETERENCED:

DATA

9) PURPOSE AND METHOD:

Sets the zoom out magnification factor and calls ZOMTOP to finish processing
the zoom request.

166

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: ZMTRNs 2) MODULE: DATA 3) MACHINE: !_«
EXCEPTION

4) CALLING STATEMENT:

CALL ZMTRNS

5) ARGUMENTS":

NA

6) CALLED BY:

CURSTA

7) CALLS ROUTINES!

AUTONZ, AUTOFZ, MDISP, MTRANS of GDD; REFRSH of PALLET
8) COMMONS REFERENCED:

CURSTA, MN'JTIA, TREES

9) PURPOSE AND METHOD:

ZMTRNS is the top level data exception routine. It decides which of the
zoom algorithms should be called as a function of the mode of the system,
calls the MTRANS routine to determine any data exceptions caused by a
requested or implied translate, and calls the MDISP routine to retrieve new
neighborhoods for data bases with data exceptions.

167

G D D

PROGRAM SUMMARY SHEET

1) ROUTINE: ZOMTOP 2) MODULE: FUNCTION 3) MACHINE: i-70
REQUEST

4) CALLING STATEMENT: ~

CALL ZOMTOP(MSG.FAC)

5) ARGUMENTS: MSG - 3 element cursor status array sent by Pallet
FAC - magnification factor

6) CALLED BY:

ZMINTP, ZMOUTP
"TTCALLS ROUTINES:

SETMSG, NEWCEN of GDD ; SCALE of Pallet ; SEND of MP

8) C0MM0NS~1ETERENCED: »

STATUS, DATA
9) PURPOSE AND METHOOl

ZOMTOP requests the immediate scaling of the available neighborhood, cal-
culates the new center point and scale, and sends the new display status
array, CURSTA, to the Data Exception module.

168

APPENDIX VI

PROGRAM LISTINGS

169

i nuciN MTHY AB!N0,AARr»ABLOCK

I O0PN ABtNH Mu *

) wpif»n AA«C f «u 1
1 CJlJfW APLHCK E9U 1
iMJJItjW H.1WF RK 1*5
!.-]fH1?H irrtft

170

PAGC

KIJ'IPII)

HflfJP

uriP2
(.'ft 1*4
nrji^
none
|}MP«R
(i(12 Hi;

J024H

:ir)2«l!

U08CK

.111341'

HHJBR

W<3CI<

H042I!

H046I'

;U'd»i;

ii:i4fi<

nitss>"

tnsbR

UflSAH

««USF«1

11(1621'

I'lMI'

•4|»«CM

•1;J7?H

U076M

MO/A I1

ftttnn

4S4F

M(1H4
4A6f

CPU'
toVH" j
4flB2
PCM
r:<rf"
PMP4

CR3?
v» (»"•(.

"HAP
1»73
UK I'M
IX/t"
HMC4
«hA7

4-J1i'
fc*l52R
5*887
C833
•ifeOH
CRHi
n«tn
4?3l
.•i(j4,m
r;c8"
'< .1'«.3

4 3?', I

'<••<'. f>V*

C8Ai
r-- c c i

W4Q1R

•/;<0|

•li'.FV
^cr «;?
F IX"

4P.1 I.
•At't <,l)

RLT
TNPF Y

TPMT

LfcN6TH
SAVE
ALLOC

i.POP

I OOf i

SVC

F "TRY

CALI
(X T » M

r ui)
FQl.i

t«U
FlJIl

F OU
ns
STM

I H

I H

I H

LHI

IH

SHHL

L"!

L*R
I H

Al I Or,DF4|.nr
4unnr (lignrx, IPNT,MON|)
rwMsc
'i
?
4
6
H

*,SAVL

INDEX.lNnr.X(15)

IPNf,JPNT(151

MONr.NOMlf15)

1,3 SFT I OOP LIMIT

Lf NC,TH,4(TNnFX) GIT riRST LENGTH

LENGTH,4

i,l?.(f*nt- x)

IP,LENGTH
7,uc:»)

3»HL 7.4

8MB
UNM

IHR
I HI

SLHL

RN7

I HI

t\

AMI

Sin

SVC

I H

LOPP1

LENGTH,7
1,8(3)

SHIFT OUT BLOC* LOCATION

GfT AOORFS OF NEXT TNDFX ENTRY

COPY l.FNGTH INTO SCRATCH REGISTER
LOAO NFYT LENGTH

SHIFT OUT RLOC* I ORATION

WHICH TS BIGGER
CONTINUE IF LINGTM IS BIGGER

SrT NEW LENGTH
PnlwT TO NEXT INOFY ENTRY

1,1 OONL LOOPP'G

I. OOP | nOP IF NOT PONP

IFNGTH,3 Mill T BY S TO Gil TOTAL NUMBER OF RYTFS

SVC TFST FOR FHPTY COLUMN

1H.1 STT RlTURN cODf FOR FMPTY COLUMN

RFTMP RETURN

LENGTH, 1?B*?4*f, CAl C TOTAL Lf.NGTH NEEDED

l.rNGTH,|.r KV, STORF LENGTH IN SVC «l OCK

7.AIOC Rf SI »VF THE SPACF

l.fRROR TS THfRF AN FRROR

171

PAGF

'MI7FI! 133c
S»"8LR

MZ WT

at)B2f> 11 r y MA|. lP.FR^SG

HUBMI M(M't) nt B
0OAHN MPAAR DC A(MSi",i)

MI1BAN IV MR nC AfTlN)

tUIQCf? r'MF6P DC AfFPROR)

kjdHf i; 4 fl 1 < t
tffF- At?

CONt 1 H 1 » filtf

('(1521) CA1H
KHJB

AHI 1 ,24

(W9AH 4PM
<4CfM"

StH i,"dPNn

PW9AR «7AA X*» if,tn
atiacn 4MA6

MM MIi'
OC TUB STH IH.MfNONF1

LIMA Ml! DifM HFTURD |.M B.SAVF.

iniA4K 4AFF
MMP'/t

A'l !5»RfTCiSJ

tfflA8lf e3Pf RH 15
MilAAN 414C.

iC4r
4321:1

433/

"SRI fcC r• AI tor "5wr7'

0BB4N MP?A TFW DC If
HH96II CHMR rivN DC 11
WCHBI! 4445

11 At:
1F«J
?M5J
*643
3"/?n

M3G2 DC C'DLALDf. BVC7

R0C4R
MMC'.td

nrAUOC CjTM I'.SAvr

Ul'Cfll? 481 y
(iH'F MR

LH 1 ,u K|r,

0OCCI! 4(«ia
«1 M H rc

5Tn t.LLMC"

;ii'npii) 4fl1U
w.r AR

l" i.Knr

H'n4ff 4ft ;i
U1M2R

SfH 1 ,noFn

uonao M/ I S"t 7.0ALPC

,1(!n(-|* 40 HI
|".<FFR

1 M 1 ,OAInr»?

iicr^i; 4 33"
il''Al'R

p/ »F Tl'RI)

nor4i' 41 r-1!
I'«B1'1

RA| ts.r P«SG

iMTHI! Ml'MM *C A
tM'r»|j -1V M '•(,T f>C A f "ar.?i
tfi'f.CU UMttfif) nC A(n.vN)

SKIP If NO r»HD»

r.rT ADDRF5 OF prsfPVFn cnpr

ALLOW ROOM FOR HFADFR

STDHf IN RFTURN VARIAHIF

SFT RFTURN COPF

172

WMTU M«rc nc DALOC*?
UlTfilR 430M

tyVAtyR
p PFTURD

0HF4R r>jH«n ALOC DC 3
van f>u 11001) r RROR nC 0
JHfHM HfJ&H I.FNG nc *-*
UW AR WMtfW miF nc *•**

gorcM UWW4 HALOC nc 4
unrru («SJ{H1 r>C Pi

U100H ftfo0W LEINGQ DC *-*
fltQSR H0(?y BUFD nC *-*
BilMR F.ND

173

SURR
COMM

COMM
wnxx
2.XCU

TNTF
IMF
MODE
riFTii

our
CN
TQN
OH
TNT
RA,

GF.R
SIR
sA
RN

I*F ATOF-FS(HSG)
/MNUTIA/ ON,OFF,YF3,NO,UP,PASS
,AUTOF,STUlC
/CURSTA/ MODt,XCE:NM,YCt:NM,nxr.FN,OVCFN,xrXTNT»YtXTNT
,OYXTNT

YC.tJPA,OXCUHArOYCU«AfXCURM,YCURM,OXCtJRM,OYCURM
OM,OFF,YFSrNO,tJP,PASS

AUTON^AMTOFrSTATIC
TOF

174

SUBROUTINE AUTOF7
COMMON /OATSTA/ CURLtV(t0)»AUTOFS(!«)rGX(15)),GV(ld),CnL(4rll3)
COMMON /DAT8AS/ PREFIX (1&) ,NUMLEV (10) , INMfNU(1 H) ,ZM0THR(4, 10) i
l2MINTH(4,10)#D(4,lfl},NUMX(4,10),NtiMY(4,lt})ririLEC4,10)#
8DPINDX(4#|B)»ITYPE(4»U»)#ICOlORf4rl0>#N»IMDB

COMMON /MMUTIA/ ON,OFF#VFS»NO,MPfPASS
1 f AUTnM,AIJTOF» STATIC

COMMON /COMMUN/ SELCCTMen,DFLFTF d«0
rriTFcr 9 sn tcT,nr:i rTr
ir.TFGF* OhlNOX
TNTEGf 1 CURL* /,AUT"FP»GX,r,Y,Cnt
INTEGER ON»OPF,YES»N0»UP»PAS8
TK'TfGCP AUTnN,AUTOF'»STATIC
r>0 |0 I«l,NUMOfl

IF'AUTOFS(I) .F». OFF) On TO 1H
CALL CLFVELf TH.tvri)
iFdFVEL.EO. CURLFVU)) GO TO IB

SFLFCT(I) «LLVfL
DfLFTLd) » ON
IFCCUfUFVfl) .CO. H> OFIXTFU) "OFF

lfc cnjriMJF
l!FTl|R'J

175

S'.IBPOU
COMMON

i ,Auro
criftMbN

1 ,OVXTH

T M T r. n r:
jNTrr.r.
Mnpt s
I'fcTllKM

TIME AHTONfl(MSG)
/MNUTIA/ ON»QFF,YF9,Nri,UP,PASS

M,AUTOF,STATIC
/CURST A/ MODtrXCFNMfYCFNf^nYrFNjOYCJ N, XTYTNT,YCXTNT

T,OYXTNT
.YftllRA^nYCMRA^aYCHMArXCUH <.Yf"RMfnYtUWM,nYr.UPM
R ON,OFF,YCS,NO,UP,PASS
R A!IT(.1M, AUTO» »STATTC
AUTOM

176

10

SU3RCU
CnMMOM

1 rM'TC
COMMON
C 0 M M 0 N

17MINJTH
i> DBI^O

CO 4Mm>

INTEGE
TJ'TEGE
INTEGE
i»>rcGi
no i«

CAL
IK

TINE AUTONZ
/MMIITTA/ 0N,OFFfYE3,M0,t»P,PA88

N,AIITOF ,STATIC
/OATSTA/ CU»UEVC10)»AUTOr«f 10),GX(10!) ,GY(10) ,COl (4,10)
/OATBAS/ PREHXC10)#NUMl CV (1 0) , INMENUC 1") , ZMOTHR (4 ,101»

(4,in),O(4,lfl),WjMX(4,ien,NUMY(4,lPJ),TFILF(4,10),
X(4,10),!TYPt(4,10),TCQLOR(4,10),NUMDB

/CflMMUN/ SFLtCTf10)»OtLETr(10)
N CURLEV»AMT0F8,GXfGY»CPL
R SFLFCT,DELETE
R CM,OFF,YES*NO,UP,PASS
R AUTOM,AUTOF,STATIC
I«1 .KilJMOB
l CtEVELn»UVEU
LEVFL .EQ, CU«LEV(I))G0 TO 1*
SELECT(I) • LtVEI.
OELETE(I) » ON

AIJTQFS(I) « ON
TF(LEVEL .CO. U) AUTOFSfl) « OFF

CCf
NFT
FKD

r T M
URN

IFfCURlEV(T)
UE

FQ. 0) PELETFfT)«0FF

177

178

SI'Wl'
Cf'HM

) »»U
rn«"

l.oxx
?, VC'J

cn>ts
rnv.w

17'4TM
? nni
luir
IMTF
IKK
rtsjTc

LKVF
c TC 3T r"»"

If (X
r puncFSf!

T F f w
T

n U
on T

r zno* I
i 0 ircx
c MUST HAV

I.OOM

I

?•' rn^r
r,n T

r MIJ3T MAV
3«" I OOP

PO 1
1

rfH CO'll
r,n T

'»•' !F((
i i.r

(,-' ritT i

tN<>

nuTTME r.U
0*' /MuiiTIA
TON.AMTOFf
n»j /riiRSTA
"T, OVXT^T
RA.vc'iRA.P
UN /PATSTA
ON /nATHAS
TH(4,1B),D
NDX(4rin)i
GET) CURLfV
r,F R RRTNP*
GEG ON,OF
GTR AHTPN,

I. • c
OUT OF RA

FXTNT .GT,
If ONI.Y ON
UMLEvrt) .
f- ((XEXTNT
VIL « 1
n *)*
M OR ZOOM
r.XTAiT .i.r,
r ZOP^EO n

• NilMI F V(

" J" l.LOO
rv i LOOP-
t fXEXTNT .

ICVFI •
r.n rn SH

I'.'HF
n hv
F ZPOMf 0 I

« MIIHLLV(
P IFv» l.L
FfXFXTNT .

I FVf I •
Gn TO SO

T'.i.'F
p fici
XTXTNT .r.T
>/U. • »

NGF
ZMPTMR(t,I)) GO TO 6<*

F ICVtL OF- DFTAIL
GT. 1) r,p TO |H
.LI. 7M0THR(1»I)) .ANO.(XFXTNT .GF. ZMINTHfi,!))

OUT
PXXrMTJGP TO 30

i<T

M
p

J •
PT.
I EV

1
ZMpTHRfUtV.n) HP TO 2(«

M
I)
nop
I T. 7"IMTHfLf V,in GP TO At*
LfV

, 7MPrHR(|rvCL,Ii).nR,fxrxTHT.LT.ZHINTH(lEWfL»I)i1

179

SURWPUl lft|£ CLMLRS(J» JSTART,IF3'0)
COMMON /IRASF./ CBSAR(2,4H),KNT,FRSIZF.
CsOMMON /TREPS/ MAPTwr,MC^T«F»'''ORLn(?)f7INBUT#T«NBUT,SLCTRT,

1 AIIFHUT,Z0TBUT,M{:NRUT,A0N8(JT,5TABI|T

2 ,RMAP(2)
COMMON /OATSTA/ CURLfV(f 0),AUTOF »{ l»)#CK£ti)#GV(|8) ,COt (4, If?)
COMMON /OAT B AS/ PRF>IX(t»)#NUM(pV(lH),INMrNII(lM),ZMOTHR(4,10)»
1ZMIN1H(4,1«),D(4, tfl),NUMX(4,nn,*HlMY(4,l<?),IFILF(4,lP»)»
2 nfljwnxf4f10)f ITYPF U,l<*)r innLOR(4,10),NIIMOB
IwTrr.r.'? CURLFV,AUTOFS,GX,GY,COL
IfTFGF.H DBTMOX
INTEGER fHSIZE
iNTLGfR 7TN«UT»TRNB*-JT,SLCTBT , AIJF BUT , ZOTBUT , AONBUT, ST ABUT
00 2C KOI a ISTART»TfWD

Tf fCOLf ICOL,I) ,EO, H) CO TO ?«
IFCICNT .LT. TRBI7E) GO TO ifi

(All. ERASF (**PTRF,FRSAR,KNT,?)
TCNT • 0

1*. KNT « TCNTM
CALL KiAMFCPRtTTXtT) ,COl (KOL , I) ,E RSAR U , K^T))
COL (. TOOL, T) « g

Z'i CONTINUE
RFTiJRN
ENO

180

SUBROUTINE CRTOMP(XCURk,VCURA.XCURM,YCURM)
COMMON /STATUS/ CUR3TAC161
iNTfGLH xCENM,Y£EflM_fXXTNT,YXTNT,XCURfl#YCUR8,XCURN#YCUfLN--
INTFT,rR OXCFNM,OYCFNM,OXXTNT,OYXTNT,OXCURA,OYCURA,OXCURM,OYCURM
DATA XCFNM,YCENM,XXTNT,YXTNT,XCURB,YCURP,XCURN,YCURN,

1 OXCFNM,OYCFNM,OXXTNT,OYXW,OXCURA,OYCURA,OXCURM,OYCURM
2 /l,2,3,4,5,6,7,8.9,iW#l1*12,13.14,15,16/

C CAUJIATF DISTANCE CURSOR IS FROM CFNTER
Arf3X • XCURA ?2S6.
AR3V » YCURA -?40,

r. SCALE THAT DISTANCE AND ADD TO CENTER OF MAP TO GET CURSOR POSITION
C IN TERMS OF MAP C00ROINATE3

XCURM « CURSTACOXCENM) • ABSX*CURSTA(OXXTNT)
YCURM • CURSTA(OYCFNM) • AHSY * CUR8TA(OYXTNT)
RETURN
END

181

SUBROUTINE CURPOS(lX,lY,IDA,IACT)
COMMON /MSJUTIA/ ONfOfF, YES,NO,UP,PASS

t ,AUTON,AUTOF,STATIC IftrW- «H — -- - -
COMHOfi /MENCON/ MfNU,ONXC-,ONRXC,OFFXC,0FPRXC,MENNMEC2),

1 STATUS(?).,SYSTATC2),SYSRESf2)
2,STATY,RFSYC,RLEFT «.£^<- i ,r$'
COMMON /MACRO/ MACNUM(IH),MACEXPC10,4),FFTPOS(10),POSFET(10)

J ,MUMFFT
PEAL MENNME
INTEGER FETPOS,POSFET |

INTEGER ON,OFF,YESrNO,UP,PASS
INTEGER AUTON,AUTOF*STATIC

T CALCULATE POSITION OF D'HSOR IN FEATURES
IDB * a
MUM « NUWFE-T + 3
DP !<* J • 3,NUM

K»48«-(J-1) *24
K1«K-?4
IF((IY,LE.K),AND. (IY.GE. Kl)) GO TO 15

10 CONTINUE
GO TO 20 •

lb IDS • FFTPOS(J)
C GET ACTION TO BE TAKEN
20 IACT « -1

X • 'LOAT(IX)
Y • FLOAT(IY)
IF CC X #GE# ONXO.ANP. (X _*LE,_ QNRXC)) IACT • QN
IF ((X .OF. OFFXC) .AND, (X .LE*. OFFRXC)) IACT • OFF
RETURN
END

182

PIJBR
COMM

JrOVX
?.xcu

PEA*.
TMTF
DIME

VCEM
yf XT

YExr
XCDR
VCUM
yri»p
YCt'H
DXCt
DYcfc
OXXT

OYXT
oxr.u
DVt'U
oxr"
OYCU

r.ALl.
PFTli
F fjr

OUT
ON
TNT
RA,
NA

GCH

NS!
M«S

NT«
NT«
A *
A«5
M *
MB
K.

N
NT
NT
RA
HA
RH
R*

TNF C')RSTA(NAME,TYPt ,LENRTH,8TAT)
/CURSTA/ MODt#XCENH#VCFNM#OXCfN#OYCrN,XrXTNTfVFXTNT
»9YXTNT
YCURA,CiXC'iRA,nYCURA,XCIiRMf YCURM,nXCURM,OYCURM
Mt
TYPE

nw STATftft)
T A T (1)
T AT (2)
ST ATM)
ST AT(4)
STATC5)
TAT(M
STAT(71

STAT(B)
« STATfQ)
« STATMP)
* STAT(U)
• STAT(12)
s STAT(U)
« 3TAT(14)
* STAT(15)
* 8TATCI61
TUNS

183

1J

nuep
CQMM

1 fHU
C'JMH

t ; A11

c o n H
UMfN

? DM I
TMTF
IhU
JNTC.
IMF.
T M11
¥«B,
TTf T
KB**

Y a
RETU
P>!0

OUTJNE PBPOSdrV)
ON /MACRO/ MACNUM(t«1)(rMACCXP(lPl,4)fFrTPOS(l*

,>rPOSrETtl0)
Mf t'T
"S /MNUTIA/ ON,OFF.YFS,NO,UP,PASS
rCN,AUTOF|STATIC
nN /DAT ST A/ CUPLFV(loi)f AUTOFS(10)»GXf !0)tGVC10),Cni.(4f IB)
ON /nATRAS/ PRtHXM0),NHBlEV(l»),INMFNUMB)»ZMOTMR(4,lB),
TH(4t10),Df4,|B>fNIJMX(4f JB)rNilMY(4r 1H), !F!IF(4,10),
NO*(4,tB)»XTYPtC4»10)rICOinRf4,IB)rNUMDB
RFR HHTMDX
GCR Clt«t.EV,AUT0P9,GX,CYfC0l.
GCR rFTPns.pnsFtT
fcf.R OHf0FF,YE5#MMJP»PA8S
GFR Al TOw, AU10F rSTATIC

Nv'trtll(I),t Q, HO) GO
:"-(^nsfFT(T)-n*24
r L 0 \ T (K)

TO IB

184

PAGE

CALL F!R"Sr,fMSG,l FN,NUM)
unnpK FNTRY FRMSG
OHO? MSC FQu 2
0H<M LfN tuu 4
BJlflft MJM FQU 6
kUltM OUTBUF tail t
HRPiptrt 8AVF 03 32
k)l)2i>i' D'40«

^HUHR
f PMSG STM HfSAVt

0I124U 484r
P0P4

L* LF*>,LENM51

0H28H 4844
0000

! M LF N.tULCN)

0fl2C'< B4894 I MH 9.LEN
t"»?CM 4810

008LR
l> OUTBUF,OUT

atnzn 482F
0002

I.H Msr,,M3r,(iB)

MM3«t(4882
0000

LOOP LM 8,H(MSG)

00 3 AH 4081
000H

STH 8,0(OUTBUF)

0(13FR C8!l LHt nuTBUF,2(0UTHUF)
0002

0042R f-82?
H0«2

LHI M3G,2(MSG>

Hf14<M) CB90
tj00?

S"T 9,2

HI14AK 4220
«036R

nP LOOP I nop UNTIL MSG is Movcn

HH4FW 4880
0WBAR

LM 8,BLANK

0H52H 4081
Mf«00

3(H 8,M(nuTRUFI

0MA8R C811 LHI nuTBUF,2(niiTniiF)
0002

0P5AII 4 010
00BCR

STM OMTRHF.OFST

eHsen 4B6F
!40P<S

1 H M(JM,NIJM(1«I) PICK UP NUMBER TO BF PRINTED OUT

0IJ6?tl 48««6
M0UIM

LH t»,MCM|M) PUT IT IN W(* FOR SVT.

WI6M? F1?H
00PLR

SVC 2,C0NV COMVFHT T" ASCII

H(16*ll 4 8<Ht
WBAR

i 1 H,HI ANK GET A COUPLE OF BLANKS

(JH6C.U 4f'81
M004

•UN 8,4(OUTBUF1 STORF IN OUTPUT BUFFER

W172t) r A an
HPP7

AMI LFN,7 POP CMARACTOR COUNT

01I7KH 4 04H StM 1 fN.lfAJGTM STOKE INN PAOAMFTFR I 1ST

0i)7Ar< F. 12 fr<
^81 R

s^c 2.SEND PUTNT MSG

HI»7£il 4 3'n-

!«P7f »f
I.OPP? n i_nnp? LOOP

185

P*tC

HHfl2K 0191V I M P,3*Vf

OdSfl! 4AH Ai !S,M(15)

VM!8Af* («3ff 3H n
POSC" M«02R put PC A (MS)
HtlSf.n fHfl/ SEND Of 7
HM9PN i/MOM LENGTH PC •«*
U092R *S 03 4«
tJOBAR ?HJ>*i BLAN" OC X'?H2ft'
WtBCU HHflft COMV PC 6
{U1BEH 'HJCB 0E3T pC *.»
B0C0H END

186

SUBROUTINE GROCENn»LEV,NGX.NGY)
COMMON /CHRSTA/ MOOE,XCENM,YCENM,OXCENfOYCEN,XEXTNT,YEXTNT
i,OXXTNT,OYXTNt _ _..._.
2,XCiJRA,YCURA,0XCURA#OYC«iRA,XCURM,YCURM,0XCURMf0YCURM
COMMON /DAT8TA/ CURLFV(10),AUTOFSf10)#GX(10),GY(10),C0LC4,10)
COMMON /OATBAS/ PR*FIX(10),NUMLEV(10),INMENU(10),Z*OTHR(4,10),
1ZMTNTH(4,10),n(4,10),NUMX(4,10),NUMY(4,10)»IFILE(4,t0)#
2 nBINDX(4,10)ftTYPE<4#JM)rXC0L0R(4fi0)»NUMOB
COMMON /MAP/MX1,MV1,MX2,MY2
REAL MXt,MYlrMX2»MY2
INTEGER OBINDX
INTEGER CURLEV,AUTOFS,GX,GY,COL

r: CALCULATE X AXIS GRID POINT CLOSEST TO POINT X FOR CURRENT LEVEL
NGX • IMX((ABSCXCFNM-MX1) • D(LFV, I) /2,) /DCLEV, I))

C IE INDEX WITHIN 2 OF MAP EDGE MOVE IT 2 AWAY FROM EDGE
M«NUMX(LEVf I)-»2
irrNfiX .GT.N) NGX • N
TFfWGX ,LT. 2) NGX • 2

C CALCULATE Y AXI3 GRID POINT CLOSEST TO POINT Y FOR CURRENT LEVEL
NGY • IFIX((ABS(YCF.NM-MY1) • DCLEV, I)/2.)/DUFV, I))

C IF iwncx wiHTIN 2 OF MAP EDGE MOVF. II 2 AWAY.FROM EDGE _.

N«NUMY(|.EV,I)-2
IFfNGY ,GT, N) NGY« N
TF(NGY ,LT. 2) NGY • 2
WETURN
END

187

PAliE

MW1

I DA/')

HM"!'

I4t!?5>li

un;4t»i(

ui4f»n

I fificr:

0l'6fl'

«H^2
1Hi
•ITS?

W M PI H

< M M (

f nnnr
nnaa
5 lit
M <H
4S3/

MJI PI l.l

;<H{«2

415 1
4«s:<7
?n?n

l*fJU2
*4«i2
1J 4t
*:137

ray PMf*
Mf^2

4S41
h?37
2t"PH

ew*
CM"?

4943
S*>*>?
•>:4b2
?<*2li
UHifiV
HdPI

:«f"H2

f NTWY TMPTAM
I'XTXN AC0HN,SCALF:7flRASF7,TRANS7,CLMR7,TC"HSR,IKfY

fXT«N MND,RF.FR87,3TATIW,AniTC'1
E.XTRN ISTFW

IMPTAB nC ?,C'ACQRM '»0,1.A(ACORN)

nt ?,C'SCAi.r7 '#«,!,»(SC»LF7)

r>C 2,C»FHAr>f7 1,lt,i,k(inkSt 7)

DC 2,C>T»AM87 'f»r1,*(TBANS7)

of. ?,C'CIFAR7 ',H,t,A(CLFAR7>

r>C ?,C'ICURSP ',CM,AUCURSR>

nc 2,C J«FY '.«# i,»(iKm

188

2020
0000
0001

1H7BR BB02 DC 2,C'PIND »,0, 1,A(FIND)
4M9
ALAA _ _ . .
2020
2fc*20
0000
0»0J
HM0HF

00B0R 0002 DC 2,C'REFPS7 •,0,1,A(RLFRS7)
^24f>
Abb?
*>!37
2020

0001 __
00A0F

(B90M 0002 DC 2,C»** »,45,1, A CLSTFN)
2A2A
2020
2**20
202"
0020
0001
B000F

tffJABR 41002 DC 2,C'A0ITFM ' ,0,1, A (ADITF M)
4144
*954
454D
2020
0000
0001
MHC»C*F

MJBBR 0002 HC 2,C'STATlN '#0, UA(STATIN)
5354
4154
494E
2020
0000
0001 „ „ _ ...
0000F

I BCPR 0000 DC 0,0
0C100

1 0C4R F.N0

189

0H001R FNTRY JMPTA8
MMH EXTRN ONR,CURSU
HUHMK WH02

<1F4E
IMPTAB PC 2,C'QNR

2fci2y
202H
(1000
C'fr»0fr'
"H5WF

uujftn MHH2
4J55
3253

DC 2,C»CUR3TA

544!
?02frl
WUPH
WHAM

*<3t>tfF
BHJW '/100M DC 0,0

L4«0H

«,0,0,A(nNR>

,0,0,A(CURSTA)

i.n)?4i; frNn

190

IK IT
COM^C'fc /COLORS/ Pf P.vtl l Pw,GPtTN,m AC*
cc**^ /COMVLIK/ stLKCKJMJ.oFirrrrn»)
^OM-'ON /CURST A/ MOPL, KCf.Nh, YCF•'* , QXCF N , P Y(,FN , XTXTN T , YF X TNT

1 ,')XXT\T,riYXTNT
2,XCU^A,YCURA,0XLU«A.0rCl"»A.)'ClJ<'M.VC.U<'M,nXCUHwi,nvrijBM
COMMON /DATBAS/ PRF.^IX(101.MHM(F V (1 Blf TNMf Mil (J HI , ZMQTHH (4 , 1 VI ,
17MT'iTH(4, tPI),D(4.1H)#NHMX(4, t«H,MI|MV(4,lB),lFII.F(4,lP1,
2 rmiMDX(4.tn),TTYPt (4,in), tcnuriH(4,l»),NilHrin
COM.-ON /OATSTA/ CMRLFV (1 0) , AIITPFS (1 *1 »GX (1*) , GV (1 SO ,COl (4 , 1<*)
COMMON /[RASE/ FRSArt(2,4P),TCNT,FR3m
COHMn-M /MACRO/ MACNUM(IH) ,MACFXP(1C,4) .FTTPOSf 14"1 ,POSFFT(l(11

\ ,N|!-Mrr_T
COMMON /»AP/MX1»MV1»«X2,MV2
CO^MOSI /MF*.CON/ MFNU.riNxCf«MRyr,PFrxc,orFRxc.MrNNMF(?),

1 STATU9(?1,SYSTAT(2?,SYSRFS(?)
2.STATY.WFSYC,RLIFT

COMMOM /«MJTtA/0»'N,Cf f , YES."0,UP.PASS
I ,AuTn^,»nTnr,STATIC

CC«*ON /TRfLS/ MAPTRF,MCNTPr.wORl n(2),/lMR|iT,TRN8UT,SlC1HT,
\ A'JFn.jT,7nTQi.lT,*CNR'JT,AnNniir.STAR|lT
? ff?MAPf?)

COM-dv /FAC/ 7nQHTN»Z00M"T
COfi«40'< /FILL/ MFILL
INTEGER Rtn,VtiLnw,GOFEM,«LACK
INTpGl'S SELECT,DELETE
INTFGFR ORTNDX
INTTGCR tUWl F V,Al'TOFSfCX,r.V,COI
INTEGER FRSIZE
INTfGFR FfTPOS,PnSFLT
HfAl <Xi,M¥1.MX2.MY2
HEAL "f.NMMC
INTf.ClR AUTON, AljTOf-,STATK
TKiTEGf R O'JN.OFF- , YE 3»NO»ltP, PASS
JfjTrGn ?TM9iJT,TR'i«UT,S|.CTPT , AllFRHT, ZDTBUT , AtlNRI.IT , STABlIT
tNTFGCR BlirSI(4)
ni"FMSTfl>i STATf?l)
FXTF«MA| SAVFA.xPK'SP
rXTFMK'M. MF»ilUiPfMFStCT,Ai'TnMR,ATnFFR.3TATC.S
TATA m TSI(1), Pi IF ST (?) .PtlFSK.O ,RllFST(4)/Hf»,4, tM*0,3/
riATA Uf1P/-i/
CALI i»rnr;nM
r Alt nn«e)r A(f>3n)
CAI I TMPTNT(BUFST)
CALI 1"K •'AOTRF.^FMIUT, 1 , M| Mill PI
CAI I nJf«APT»L»1lCT9T,t »"TSLrT)
CAI.I 1« f MA|»TWF, AONUUT, 1 , AijTn»jSl
CALL t!'< (MAPTRF, A.iF--plT,1 , ATHFFR)
CAI. | DN("APTRt,STARUT, 1 .STATC3)
ciATf ii»xrrN*<
ST ATI ?1 *VC[KiK
r.i ATf-ji ixr XTNT

SI ATM) *YFYTMT
"-TM (M»*tl">*
STAT (M»Y(.I.'R»

191

3TAT(6)«VCURM
on 10 .JJI,«

Ka./*8
STATf!0«$TAT(J)
CONTIKUf
STATM71 * aORLD(l)
?TAT(i0)»i'0KLD(2)
ST AT (19) * JOOf'H!
STATf?<a)»7C0MpT
5TATf31)«M4PTRF
CALL SrTS4V(»l«KSP,SAVEA)
CM.L INTF'e(MFTLF,t>SAVEA)
f'AIL LHKSWCSAVCA)
TAI.I nPflNful'JKSP, «HMAPMENH ,SAVFM
rAtL tHK3AV(SAVEA)
''AIL ttCAU (MFMTWC>
f At L sr'Jr)(8HSTATIM #63,Stf,STAT.84,ERR0R)
f Al l. DISP1 Y(MAPTRF,iTOP,wnPLn,Pt,0.,100,r100.,0,,0.,0i,WpR|.D#&)
CALI rTMP(MAPTPE#WOK|.n)
r.ALL HI5I5PCIFI AG)
f ML VP

192

PAGE

jH«Plt»l> fNT«v I»J«Vf

IBUr ADDRESS

INDEX »PDRESS

COUNT Or 4 FNTRTfS OF 2 WRDS APIECF

LOAD WOHD FROM IBUF

STORE IN INDEX

POINT TO NFXT PUFFER ENTRY

POINT TO NEXT INDEX ENTRY

DONE 4 ENTRIES YET

CONTINUE UNTIL DONE

* IAU . INPVf CBU
MHPHR SAVE" D3 1ft
HI' 1 71! DMBi" INMVE STM 8.SAVE

U014U 4nar
H'H«2

LI B,?M5)

ijniBK .iBor L* 9,4(16)

HH1CR C8AB LMI If, 8

nri2i»i(48P8
n c« w t'

1 OOP LH 1!,«(B1

(M1?4|(40B9
^ (1 f"' i

STM U.H(9)

lU!?BI» CBBB L1I B,?ffl)

UU2CI! C.flO'J
WMC»4

LHI 9,4(9)

00.1 ("II CBAH
C.U1 f« 1

SHI 1(*,1

tf M34I! 4?3.;

m<2u«
HN7 LOOP

D 1)3811 DIB"
min*i«

| M B.SAVC

UHJCH 4 An
It \A (»f i

AH lf>,H(1M

nii4nn t"JPF nw 16
n«4?r> t'"P

193

3UHM
rpMM
COMM

1 ,AIJ

COM"
CnMH

1 7MTN
2 pel

C'lMM
1 AUF
2 »r>*

P'Tl

T •. T f
TMF
TMT

TK'Tf

r.) A T A

OATA

DO ?
T
C

C'IPt
i" PFI r
?<i cnMT

IF(\
CALI
IC'JT
imp.

;i* no 7
t
i
c
c
I
n

7 1

c
s
D

I
(
(.
T
f.
S
c

f nur

run iME MOI

t»h /FPASE/
OM /MMUTIA

TON,»UTOF,

OK /COMMON

ON /DATSTA

ON /riATBAS
IM(4,|P),0

NDX(4,lf»),
ON /TREKS/
BUT,ZOTBUT
AP(2>
r-C" 7INBUT
r.rn CURLF V
r.rn OBINOX
RE* «»FLECT
GCR ON,OF
OLP AHTON,
GC" tRSIZE
"srriN TNOC

lAron.LCFJ
ISTART,TE

" I« 1 ,MIIM
r f ft"iPi.t«(
Al.l. CMERS
rv(T) « ?
rrn) • OF

T"n.'F.
CJT ,FO, w

r.;U3F(MAP
» i?

t >:•!
H I » t,NU
rrsCLECTd
IVFL • sri
ALl RPOCFN
AI.L SETINX
r (MONf .E
n 3fl !COL«

couicoi.

0 TO 7f
n en icni_«

C"L(TCOl
PNT»THIJF
Al I. REflSNO

(iHTTNIir
r i R r: c »1
UPI rv(i) «
EirCT(T) •
Al.l. PFALOC
i iur
P'

SPflF
FPSA

/ ON,
STATI
/ SFL
/ niR
/ PPF
M»i*
ITYPF

MAPT
,MFNB

URCE)
H(2,4t»)
OFF .YES
C
EtT(101
LEV(tH)
PlXtJI")
),NUHXf

(<E,MFNT
UT,AOMB

,icNT,n»9tri
,NO,l)P,PA83

,OH.fTlC!«)
,AHTOr8C1»)»6XCl^),GY(1fl)tCOL(4,10)
,MIIMl CV(1P),INMENU(1M),ZH0THR(4,1(«),
4,U»),NilMY(4,10),TFILE(4,iei),
TCOLOR(4,1?I),NIIMOB
RE.WORIP(2),ZTNBUT,TBNBUT,SLCTBT,
UT.3TABMT

, TRNPUT.SLCTBT ,AUFB"T,Z0TBUT,A0NHUT,9TABUT
,AHTOFS,GX,GY,COL

.nriMc
F,YE8»N0,llP,PAS3
AUTOF,STATIC

X(?,4)
GTH/ir?/
NO /!»4/
PB
I) ,E". U)
(I,T3TART,IF

OR. (OFLFTE(I) .{0. OFF)) GO TO *
NO)

) GO To 3«*
TRE,L«SAR,TCNT,2)

Mnn
) .FO, OFF) GO TO 7«
FCT(T)
(I,LFVfL,GX(
fI,LFVFL,6X(
Q. H) GO TO

1,4
,I> • 0

T),r.Y(D)
I)»GY(T),LFTTOP,INOfX,rBlir»NONE)
4H

1,4
,1) • IFTTOP • ICOl-1

fl.l FVII..INM X.IPNT.TCOL)

! FVf L
OFF

194

Sl'MUnilTINfc M[NI>UP(MS(i1
r?HHf)N /(. u«STA/ *Pf»F. , XCt W>,

t.^XXTK'T^YXTNT
2,XCURA,Yt;URA,0XCURA»OYCIiRA,

CO«MOM /ML^CON/ Mfk'O.oMxr.o
1 3TATllS(?),RY3TAr(2),SYSKf
2,3rATY,RESYC,RLEfT

rrr«Mnu /«NHTIA/ ON.OFF.YFS,

1 »*UTON,Ai TOF,STATIC
I'jMlON /">ATSTA/ ctfRU.v(lP),
ro^MON /PATBAS/ PRFFTXLIP),

t /•TK'TH(4(, ID,0(4,19), MIIHX(4

? OHIMOXM. t9)t UYPM4,1H),I
riHMO*. /TREES/ «APTtfE#MENTR

1 MJFPUT.ZClTPUT, MCMBUT, »(1NBIi
2 ,«MAP(?1

rci*HOU /CUTRS/ PF^'YELL"".
KFAL rtFMNKr
TMTEGr;;.' 7IN<IUT,TRSA;JT,SLCTF>
IMTFGE.M PBfMOX
tNTfcGLR L'JRLCV, AIJTPFS,GX,GY
TMTEGL" A'lTON, AUTOF, STATIC
INTEGER 0N.0FF,YESfNO,ljP,P
INTEGER REO,YCLLOW,GREEN,HL
|)I*ENf.IC* MSG(U,HC.NN»(2)

C IF MENU AIUF.AOV PISP|.AYLO SKIP
IF CM[Nii .EQ. Hp) GO Tn 2Ji
CAM. 0TS°LY(*ENT9E.-lr *EN*M

C GE'CRATE 3T»TU3 REPORT
CALL 0<»f MlfSTAT'JS,»•#«.. 511

00 1? I»t,N"MPQ
IF (I*«FNIJ(I) ,EQ. SO
rp((cu«LCv(D ,fc. »i
CAt L CHAHl VflfICH*R)
LAIL OBPOS(I,Y)
CALL ^AHf(PR|FlX(I)
CAI I. CM«P(Mr^"^f TCM4R

]fl CONTIK'Ht
r *RITE Mrrr ANP SELECTION UPTT

IF r«onr .EQ, AulnN> rAI
IF(-«noE.E«.AUTPF)CALl S
IF(MOPE.FO.STATIC) CALL
CAI.I. (;HAR(SYSRE3»?H ,2

CALL OlSPl.V(MENTRF,^F-!MME,P

Hff,u • UP
ir (Mnor ,ro. AUTOS) r>i TP
CP TO 3P

r I NT r I* *E"" AMP FOHCF OTSPl.AV LUANG'S

YCEN*,nxCEN,OYCEN,XEXTNT,YEXTNT

XCURM,YrURM,OXtURM,OYCllRM
NRXC.OFFXC,OFFRXC.ME'JNME(?)»
S<2)

SO,HP,PASS

G),C0L(4,1f»)
ZM0THR(4,1.«),
4.11"),

AliTOFS(K>>»GX(m.GY(l
N|IHLEV(lH)iIHHf NI|(Jd),
,|F1,NI'MY(4, tfl),TFTLF (
C0L0R(4,1P),NUM0H
[,wnR| P(2),ZIHBIIT,TRNRUT,BLCTPT.
T,STAHUT

GREFs.lLACK

T ,AIIFBUT»Z0THUT,APMHIIT,3TAnilT

,COL

ASS
ACK

STATES REPORT GENCRATI

C,5».,H,,10?.,1M0.,f'.,PI

.»A79.,C»)

) GO TP in
.ANP. (AMTOFS(T) ,FU.

4H0W ,MENNM)
,1,0NXC,V,RED,1,1,(")

PM
I SF TSTA(23HAIIT0 ON
rTSTA(24HNPRM*L MAK
SrTSTA(?3H3PECIAL MAK
Rl EFT,RFSYC,BLACK,1,1,
ASS,«.,«.,511. ,479,,«•'.

(9

PM

,,H.,MFSK^E.«|I)

ClFF))GO TP Id

STATUS REPORT,23)
E SELECTION,24)
E SELECTION,2.5)

,B.,P.,STATUS,-1)

r> CAM. TrRSM^CMMCV')
9V CALL f'.i r.Ar>("rK'T«r)

Htwu • nr F

CAI 1 KEFUSM CENTRE,1,1))
CAI 1. PCf l>1H(1APTPE, <8,!.'1
ir OHCfafl
CALL '"Oir.p(irnpi,E)
CALL JFFiJSM(MAPT»r, i . iFo»cr.

3? I(E TI'WN
Mil>

195

5Urt«0')TINE MCSI tT("3G)
GOMMOM /MACRO/ M»CN^(I»>."*CEXPf|(».4),FETPOSFito,POSFETCi(n

! ,-.'l'4|£.T
rtlMiON /PATSTA/ rnRLF »•! ia),Ai'TOFSf t*0,GXf 1&),GY(lPI),r0l.(4, 1(!l)
tQ""4flN /I5*T8»S/ PBff IXftt?),NU*LFVC!9)f INMF>U(ia),ZPOTHR(4,10),

17"tMTHf4, 1?l),Df4,1SO,NliMX(4, tH),Nl)MV(4,t«), IFILEF4,1«*),
2 ^•IM?,XM,10),TTYPr.(4,tli),TCPl.nR(4,ifl),NU*nB

COMMON /MMiiTtA/ 0*'. JFF ,YF S^O.UP.PASS
1 ,A,iroN.AiJTOF,sTATTC
ro^^n*' /MEMCOH/ KE'iJ,0Nxr,0NRXe,OFFXC,0FFRXC,MrNNMF(2),

) 3TAT'JSf?),SYSTATFiO,SYSRrSf;>)
?,STATY,»FSYC,RI FFT

COMMON /COMMIJN/ 3iLtCT(lD)f!)FLFTF (ttl)
CO?"»ON /COLORS/ RFOfYH.I 0*,GREFN,flt ACK
TvrEGCR RFO.YFLI Ow.liRr.E^'.BLAC*
INTEGER FFTPOS.POSFtT
INTFGFR CIIRirv,AUTOFS,GX,GY,COL
IJT."Gt.R OBIVOX
Ti'TPGC1* 0N,0FF,YES>N0,UP,PAS5
F'JTFGr H AllTO^» AUTOF f ST AT IC
iMfrGtR SELECT,OFLF IL
:(?;AI.. Mr.^NMF
OMf'Jr.TnM MSG(ft)

' IT "P"l MOT IIP, FUNCTION IS NOOP
IF c tr.Nu .MF, IIP) GJ TO 901
TALI I ,)RP0SfMSG(n,^SG(2),I0n.lArTT

f 01 3'iRK CURSOR SFLFCTEO A FEATURE ANO ACTION
TT fion .Mt. f) GO TO tW

r'AU RLSPONf 33HC«JRS0R WOT ALIGMF.O *TTH A FEATURE,53,RED)
r,r in opt

O !l f T \i T.GF. ») GO TO 2I,I

CAM KFSPOM (.MHCURJiOR NOT Al IGNEO WITH A FACTION, 34, REOT
r,rs TO <)0

f 311 I pop (OH Mjicpp EXPANSTOM
?') I OOP s MAf:NU"(I OR)

00 A3 .? s 1,1 OOP
T « MACFXPfTOn,,!)

r F'ROCFSS f'M FUNCTION
If (IACT .EO. OFF) GO TO 5"

(. RCTMSTATF IFATIIRE IT PBiVlniHIV Otl.FTFO
IF(0FLETF(I) .10. OFF) GO TO 3d

OfLFTE(T) • OFF
AlHOFSfl) • ON
IF fTMMFMjfl) .TO. WO) GO TO «W
CALl ^RTCWf I,0FFXC,4H0FF ,2H ,15)
CAM RFSP0^(27HFFATUWF *TLI "'OT BF 01LFTF0,27,PFO)
GO TO 8H

r T:; rFATDPF AIREAOY SFLFCTEO
"It* IFF Ai'TOFS(I) .FO. OFF) GO TO 4fl

irriNMFhUCTT .EQ. YFS) TALL RFSPONf
1 P4MFEATURI. AI.PLAOY SFI f C TFO , 24 , Wf 0)

GO TO A*«
f SUECT THF. rrATIIRF
i«i r AI i f.LCVf I (I ,l.EVf I)

196

SFLFCTm • LEVEL
AUTOFS(I) • ON
n fTMMGNU(I) ,EO, NO) GO TO 80
CALL CHARLV(I,ICHAR)
CAU. wRTCHR(If0NXC.4H0N ,ICHAR,YELLOW)
CALL RE3P0N(?7HFEATURE SELECTED FOR DISPLY,27,YELLOW)
no TO an

C PROCESS DELATE FUNCTIONS
b* IF (A'JTOFS(I) ,E0, ON) G'J TO 60

IF (INMENUCI) ,EQ. YES) CALL RESPON(
1 31HFEATURE NOT CURRENTLY DISPLAYED,31,RED)

GO m S3
f>? IF CSCLtCT(I) ,FO, OFF J GO TO 70

AHT0F3CT) « OFF
StLECT(I) • OFF

IT (TMMENUCI) .EQ. NO) GO TO 80
CA!L *RTCHR(I,0NXC,4H0M ,2H ,15)
CALL RESP0N(29HFEATURE WILL NOT BE DISPLAYED,29,f^D)

GO To 80
r SELECT FEATURE FOR DELETION
Yfi IF (CURLEV(T) ,NE, U) nELETE(I) • ON

A('T0F3f!) * OFF
IF fTNMFNU(I) .EG. NO) GO TO 80

CALt WRTCHR(I,OFFXC,4HOFT ,2HX ,YFLLOW)
CALL HESP0N(23HFEATURE WILL BE DELETED,23,YELLOW)

8^ CONTINUE
9f RFTIIPN

ENf>

197

PAiir

UUBftH
0OBPI!

inner! n**n

BHJ4M 48fl»
BUMS

BBS en
001c" -IBT

0004
U(15>IMI 4P4;i

3084U 48HJ-
MHH6

BB«?«
HW?CM 188f-

BBP8
UnSRH *8BB

BBBU
HU34P ^i»*»(*

MC44I)
BH38H 4881-

000*

BH3Crt -188b
HUHM

•M4BR Ct-8'.l
B8B4

B044R CDMW
MWB3

I1D46R CA8U
BBtC

ff!4CP 4ti»tJ

cii5c»R I««F

«H(i(
:,()S4n 4npn

PH5BK ^ 1 r t.i

et'^CP Hdt'i
B05EH HflBt'
&C6PP '«" '
'1!ie?l(WfchC

H:|fiftl! HURL'?
nr<9^r Mtip«(t

•0«FH /IfllQ

*
SAVE
MSf NO

MA Mr
p»in
TYPE

Bur
I FNG

FNTRY MSfNO
EXfRw 3END.CR^SG

CALL M3CN()fNAMF,N«3,bB,BI|F,l ENGTH,fRROM
03 16
ST" 8.SAVF

I.H B,?(16>

STH B.NAMf

LH B,4(1«>)

STH B,PRIO

l« 8,6(151

STM 8,TYPE

I.H 8,8(15)

LM 8,H(8)

3TH 8.BUF

CALCULATE LENGTH OF MESSAGE

L* «,B(fl)

S*HL 8,4

3L.ML 8,3

*HI R,24*fi

I M

3fH

PAL

DC
nC
nC
nC
DC
oc
DC
I M

I H

8.LENGTH

8,1?(15)

B,fppnp

i5,srN0

ii

LEMGTH
-
q.rRPOR

IOA0 LENGTH FROM INDEX

Of T RIO OF ENTRY MYTf

HiJLT BY 8 BYTES PF.R POINT

ADO LJNGTH OF HFAnFH AMD TRAILER

STORf AS PARAHETfR

198

HI72K 4330
0382R

8* RETURN

4 076R A1 F «
0000F

8AL. 15,ER*SG

007 A R 0008 DC 8
007CR M08f.R DC AtMsr.n
0H7ER 86I98R DC A(TFN)
0H80R 006OR i)C A(fRROP)
0kJ82R 0180

0000R
RETURN I.M 8,SAVt

nfie6r< 4AFF
0000

AH 15,0(15)

008AI* H3RF BR 15
an ecu 0000 LENGTH DC *«*
BHBER 4D53

454E
4420
5345
4E4/»

MSRt oc C'HSEND SEND'

0fi98R 000A TEN DC 10
009AR FND

199

!0

254

SUR&O

1 ,AUT
cnwMO
C.CMMQ

roHHe
1ZMINT
-/ nMiN
INTER
INTEG
IN TEG
INTER
INTER
nn ?p

IF
CA
IF

IF

CONTI
CALL
f'ET'jR
ENn

UTtNE MTRANS(TK^RCE)
N /MMJTIA/ ON,OFF,YFS,NO,UP,PASS
ON,AUTOF,STATIC
N /tOMMUN/ SELECT(10)vDELFTE'(f0)
M /HATSTA/ CURLEVU0),AUTOFSn0),GXC 10),GY(10),COL(4,10)
N /DATBAS/ PRFFlX(t0)#NI)MLFV(10),INMENUflM),ZMOTHR(4,i(1),
H(4, t0),D(4,10),NUMX(4,10),NUMY(4,10),IFILE(4,10),
DX(4,10)f I TYPE (4,10), ICOLORf 4,181), MUMDB
ER DBINDX
ER riiRLEV.AUT0PS»6X,6V.r0L
ER MJTON,AUTOF,STATIC
EiR ON,OFF,YES,NO,UP,PASS
ER SELECT,DELETE

I»1,NUI4D8
(CURLFV(I) .EQ, 0) GO TO 20
LL GRHCEN (I ,Cti«LEV (!),NGX, NGY)
(NGY ,EQ. GV(1)) GO TO 10
SELECTCT) >CURtEV(!)
DELETE(I) • ON
GO TO 20
(NGX ,FG, GXd)) GO TO 20
CALL RPCOl(I,NGX,NGY,IFnRCE)
GX(I) «NGX

NUF
MDISP(IFORCE)
N

200

0H00R
0800
0K02
0M04
0006
tff!00R

NUM*R
FSTNM
SECNM
NAMES
SAVE

iH12t*R DM00 NAME
000k)R

0H24R 48M
M«06

0028R 4<j?f
0M02

002CH 484*
0004

0030R 481?
0000

|Jfl34R >» W 1 o
0000

0038K Ifl12

003CR 4016
0002

WMdR H/1 I
t}04?l? 4016

0004
0046R 48H

0 0 0 y
004AR 4016

0006
H04ER H10M

000 0R
IK1B2N 4ATF

0MtJ0
tf056R 03PF
0058 R

ENTRY NAME
E«U 0
F<Jlj 2
EOl" 4
P.OU 6
P3 32
STM 0,8AVE

LH NAMES,NAMFSC19)

LH FSTNM,FSTMMflb)

LH SECNM,SErNM(lb)

LH 1,0(FSTNM)

STM lv0fNAMES)

LH 1»2(F8TNM)

8TH l,2fNAMFS5

XHR trl
STH l,4(NAME8)

IH W&CSECNM)

STM t,6(NAME8)

l.M 0,8AVE

AH 15,NIJMAR<15)

RR 15
END

201

SUBROUTINE NFWCCN(FAC,OXCrNM,OYCfcNM,XCFNM,VCfNM)
r.OMHPN /STATUS/ CIIR3TA(16)
IKTFHCP XCCNN,YtENNfXXTNT,YXTNT.XCURA,YCURA,XCUWM,YCURW
INTEGER nXCENH,DYCENM,OXXTNT,OyXTNT,OXCURAfOYCURA,nXCURM,OYCURM
DATA XLEMN,YCLNN,XXTNT,YXTNT,XCURA,YCURA,XCURM,YCURM,

1 DXCEr^,OYCENM,OXXTNT,OYXTNT,OXCURA,OYCURA,OXCI)RMrnYCURM
2 /l,2,3.4,5,6,7,8,9,If.lltl?.13,14.15,16/
XTFMM. CIIRSTA(XCIIRM)-(CUR3TA(XCURM)-0XCFNM)*FAC
YCfNM»C»JRSTA(YCURM)-(C«IRSTA(YCURM)-OYCENM)*PAC
RETURN
F'NH

202

unoait f-MTR> ' HT^CHM

tfOBHH .->A»/F f)3 32
U2C4 niMfllT t'Ji1 X'?r4i

U2C2 l.l IP i Kii X'?C?'
U02FP. r>fl«n MITJCOM »TM f»,SAVC

nri?4«
•HHfiH

svr: 1,RNMO

H«?«|< *«:1M I" a,puMru2

H(1?CD •1 « <M "Z Gn

ldU3C*K » 1?H
kIM9P«

S'T 2.UMPCK

01134ft F)2H

,1J»9«H

S^C 2.SKN0

»I»3*N SVC %(«

BI13C" fun
"V71R

GO svr; t,Rt:ADi

HO40H

.'J8HK

I « d.RPAni*?

I1tl44rj RN7 FRR

BtMflP 49 111

M7W
LH J.U:*i

H04CU .1410 RTH 1,START

HOSBII -i 31 M

n?ca
I."1 l.tTOP

IJDS4M /I:M*».'
-«'4 0[;|R

3M 1,t NO

U05B" r i i M
! IBAR

svc t ,RtA"

HORCM
«y8c"

1 H H.RTAT

HDfifM' *? Vl

'.lii7klH

>U BfTURN

MflMH ••.12M
'•;i92R

t RR SVC ?,UNPCK

(UI6BI» M2V
"<J96R

SVC ?,Sl»jn

litlfttt' ri 3n
c^ n (A (.1

SV(3»i«

Uf)7?ll! 'i I'HI I.T. TllPIJ 1 M f.sAVf:

H074H •i A r y

'.l.WI

4" 1 b. H M S)

M!17fll' qW lb
UI17AI' Lf •" nS 4

»r»/rr» S8H6 ;»r *oi r»C X ' ftHWfl '

nue^i' 1 n ri 11 nC *-*
utm?i: "'i/AR ^L l(lrM
WIMK 'IH70H nC A(i.rN)*3
011*61! 1. «B* >< « SI' • oc y ircn*'
kl'lHfll' •!1(<M PC »-«

203

WDflAI! riUM") or AH DC X«H8H6'
tfORCI* tw0w STAT nC • •*
V0BKU i-l C10H START nC ft»i
0M90I! pgftty [>D DC *»*
0CJ92K 1H{?6 UKPCK oC 6
\dU9An w(*9<\!7 DC A(M3G)
H096R »iMfl/ SFND DC 7
0098P 'Hi ? A nC 4
tf09A^ MSG nS 4
W19Fr; FNt)

204

SUBROUTINE REDSNOU rLEVEL, INDEX,IPNT,lCOL)
COMMON /DAT8TA/ CURLEVC10),AUTOFS(10),GXC10),GY(10),COL<4,10)
COMMON /DATBA3/ PREFIX (10) ,NUMLEV (10)f INMENUU0) rZMQTHR(4* 10)»
17MTNTH(4r10),O(4,10).NUMX(4r10)fNUMV(4,10)»IFILE(4,lP),
2 DRINDX(4, 10), ITYPE(4#JM), ICOLQR(4,10),NUMDB
COMMON /TREES/ MAPTRF,MENTRE,W0RLD(2),ZINBUT,TRN0UT,8LCTBT,

1 AiiFBL'T,ZOTBUT,MENBUTrAPNBUT,3TABllT
2 ,RMAP(2)
INTEGER ZINBUT»TRNBUT»3LCTBT • AUFBHTt ZOTBUT, AONBUT, STABiJT
INTEGER CURLEV,AUT0ES,6X,GY,C0L
TKTFGrR D8IN0X
INTFCfR RFRSH
DIMENSION INDEX(2,4)
DIMENSION NAMESC2)
HATA RFRSH /-l/
DATA IADDR,LENGTH /1,2/
CALL RtTREVfIFILE(LEVEI,,I),INDFX(IAnDR,ICOL),IPNT,NPNE)
IFCwrnE .FO, 0) GO To 10
COL(ItOL,I) • 0
GO TO 20

10 IBt'F»TPNT
CALL SETBE (MAPTRF,RMAP ,RFRSH,IPNT)
CALL NAMC(PRCFIX(T)rC0L(ICOL,I),NAME3)
CALL SFTITM(ITYPC(LLVtLfI), INDEX (LENGTH. ICOL) , ICOLORUFVEL , I) ,

1 NAMES,TPNT)
CALL M5FNO(BHAOITEM , fij,50,IBUF,TNDEX(LENGTH,ICOL),ERROR)

20 RETURN
FMD

205

31'HRO'ITINE RCaPONflCMARrLE^f IC0LPR1
COMMON /MMUTIA/ nN,0FF,YC8#N0,UP,PASS

1 ,AUTON,MiTQF,8MTlC
COMMON /MENCON/ MENO,ONXC,ONRXC,PFFXC,OPFRXCrMENMMF(?),

1 srArUsm,3YSTAT(2)#SY8Rl3(2)
2,STATY,RESYC,RlfFT

COMMON /TRECS/ MAPTwF,M^NTRf,W0Rin(2),ZINBUT,TRNHUT,SLCTBT,
\ A!IFnuT,ZnTBUT,MFNBUT»AnNBHT,3TABUT

TMTEGC 71NBUT,TRNBUT,^LCTBT ,AUF8UT,ZOTBUT,ADNBUT.ST ABUT
INTEGER AUTON,AUTOF'STATIC
INTEGER ON, OFF, YF 8, NO,HP,PASS
MEAL *EWNME
CALL rPASE(MENTRE,Sr8RE8,1. ,-D
CALL OPrNT(SY3RE3,W.,Ut,5n.»479'.,0)
CALL r;HAR(8HSYSRE8CH,lCHAR,LFN,RLEFT,RFSYC.IC0L0R,l,l,P)
CAH 0I8P| Y(«ENTRE,ST4TljS,i'AS3ffl.,t,»511.v47<>.»t).,R,,0a,SYSRE8v-n
RETURN
Ewn

206

PAGE

tlllll*K f.NTPY RtTPFV
* CALL RETPFVCFILF.IND

U(l(»(»l(FXTRN OPUM.FRMSG
HUM? r II i r <JII ?
HP (14 INDEX run 4
miift IPNT F«U 6
Hi'dP K'OMf f Qil R

H'WIt SAVE ns 32
Hfl?(*l» D»1F»U »f TRFV 5T- a,SAVE

MP24I! 4R?I
(•(1J>?

I n FILF.Fll.FM5)

1)112*1' 4fltf
CC'1/1

1 ri INDFX,INDFXM5)

(H'.TI! -IRAF

(tPflf.
ID IPMT,IPNT(15)

PHifH! 4RHF IH NOME .NONE MS)

(W34M 4('?t'
FB7fF>

SlH FIIF ,PFII F

I-''!;IPI< /IB 1 r,
*l'*M'

1 M l.H(IPNT)

Hiurn 4M | (<
DP/PR

SlH t.FUHFFFR

1111401' 'R1 <1
t»WHr

LH 1,Hf IKJDFX)

."M4I! 4P1SI Sf H I.HI x

UiMftl' 4R|/1
IHV/1

1 H 1.4(T.NnfX)

ncurn CCU'
ffU'/i

S*HL 1.1

H()J>0ll 491P

("If)I '."
HM7 »(TH

0I)54I< 4FJAI.

stpniR

1 M 1d,THPFF

MPbHI' •1.K1U n PF TURN

l"i«iCi' 4B?4
t*t«(M

wriw 1 M ?,4f1NOF X)

kM'ACilf 4 4?t MM J.MASK

(M'64lt *A12 »HB 1,2
Mr!fi6D CD'.W

HHH1

SLH(_ 1.1

ki')64ll
nwnRi;

3fM 1 ,NHM

jiihm 4ir u
HUPUF

**l. 1S.PPIJM

11(17?!' ,««(<[nc M
Ul"/4lt H(ir>in nc AfTMPF f)
W()7»,l> '<t»CC OF TLT oc *-*
BO/fll! "","'.• niifFTH DC *-*
(U!7 4l< furpn DC A(NI)M)

Ui'7CI» v v n ^ R DC A(RLK)
H!I7FK c« k> p [." nc AfFRROW)

STORE AOOR FTLf NUMBER IN PAR*M LIST

PIC HP ADDRFSS nF ALOC4TED 3PACF

PUT TT IN PARAMTER LIST

r.rT BL"CK AODRFS FROM INOFX

PUT TT IN PARAMFTER LIST

OFT NiiMBFP OF FNTRTFS FROM PARAMFTER LIST

SHIFT OUT RVTt ADDRESS

CONTINUE IF NOT EMPTY C01UMN

LDAn FMPTV COL RFTURN CODE

GFT rNTRY ADDRFS IN BLOCK

GET RID OF POINT COUNt

ADD TO POINT COUNT TO RE RE*D
MULT BV 2 NI.IMFJFRS PER ENTRV

STORF NUMBFR OF FNTRIES IN PARAMETER BLOCK

READ THf COL FROM DRUM

207

PAGF

uneeit 4ncn
pjjOEn

L" l?,ERRnR

ICU84H 433n
0H94R

Bt COMT

tt(!8Blt 4|r u B»L 15.ERMSG

0«AC'» WHH« nc 8
BUBEH e«nf 4M DC A(Msr,ii
H09BR *<0rnR DC A(ELLV)
W'<92H MKDrp nC A (FRRfiR)
00O4H 4814

H004
CONT L.H 1,4(TN0CX)

0()<)Stt 441* MM !,M*3*

«()9CK CO 10
0003

SLHl 1,3

IVUCf) 4 AH'
UC78R

AH i,RUFfTR

UHA4U T.B10 8MI !»84

n:iA8f' 4ni r,
000M

*
»

8TM I.HOPMTI

PUT ClOSC AT FNO Of

muci' 4830
0er>8R

l« S,NUH

HOBdU CD30
M«02

SLHL 3,2

B(1B4n 4A3H
f(*78q

AH 3,PUFFER

B088H C8M
FFEF

I.HI 0,-!

PM8CK
0f0l<

gTn 0,Hf3)

HHCaii P7AA XHR 10, I"
Bur2f» 4'4A3

HSJ02
STH t0,2T3)

uacflu 4H»J
M004

3TH 10,4f3)

0HCAM 4'*AM
00C<fc

Rf TURN STH K»,M(NOMF>

at'cri' 0 J f|i L" P,SAVC

Ut1«2ll 4Arr
wmi

|H lb,P(»5)

dfm«R U3t"f H« 15
0OO8K H0(H Nil* nC *»*
l")D4l» f»0fcl< pi * oC *•*
t'fincu 0dC3 THRFf DC 3
5JPDEH KHfH" r RHOR nC l«i
HIJI- »H *HP !•' DC »-»
kir«r?u MMC'F MASK nC X»Mf!«F •
0DC4H fi?4r>

MS?
45%''
?t)44

4()?0

M'SGI DL C'RFTBrv DRUM"

HiU ?!1 14 4PM r LEV DC 11
»nr2« P'.O

GFT COL START LOCATION IN BLOC* »FAD

AMD OUT L»NCTH

MULT BV 8 BYTES PTR ENTRY

AOO COL START TO BFOINING OF Bl'FFFR

ALIOW ROOM FOR ?4 BYTE HEADER

STORI- ADDRESS IN RETURN PARAMETER

1MFFER

BFT NUMBER OF FORTRAN NUMRFRS

MULT BY 4 BYTES PER NUMBER

POINT TO END OF BUFFER

GFT fNn OF BUFFFO OELLMETfR

OTWfR nfLFMTFTERS
STORE TN BUFFFR

SET RCTURN CODE

?NO HAIFWORD OF FRROR

208

lZM'lNTHC4.1B),D(4,l««)»NUMX(4,l«)pNUMVC4,10)rIF!LE(4,l«.
2 DRINnX(4,10>,WPE(4,ltn,ICOLORC4.10),NUMDB

INTEGER CURtrVfAUT0F5fGX,6V#C0L
INTEGER DBIMDX
INTEGER ERROR
DIMENSION BUF(36)»Ir,'DEXC2»4)
IPYTf *(LFTT0P-1) *4

rAlLBnFUM(3,DBIMnX(LEV,I),BUF.^6,IHtK,FRRnR)
TMEPROR ,2r. *> CALL ERWC11HRIN0EX ORUM.ll,FRROR)
TPOS*T*YTF -TBLK*1?8
IP0S»JP03/4*1
CAU iNMVErnuF(iPOS)»iNnrx)

RETURN
END

209

COMMON /FRASC/ F»3*nf2.40),ir>T,msiz[:
COM-HN /OAT3TA/ CU»lFV(1W),AUT0F8(lP),GXflfll)»GY(lfJ),C0L(4,lfM
COMMON /riATRAS/ MfMMI*WMi»iLtvHtAWtN!M:min«)»tA<)tHi«(4,i*i,

1 7MJK TH (4 f 1 Pi), Ci(-1,1H), MIMX (/1, 1 p), MUMY (a,! 0), IF ILE (4,1 fl),
2 OPUDX(4,l&l,ITVPF (4,1*), TCPL0R(4,1P), NIJMOR

flOMKON /THCF8/ MAPTNFjMCKTRCKORLom.ZINRUT.TPNBUT.SLCTRT,
t MJP&lll . ?OTflUT,MFNRiJT,AP»JRI!T,STAfltjT
2 ,RMP(2)

INTFGrW 7TNRUT,TRNRUT,3LCTRT , AiJFBHT , ZOTRUT, A0»'RUT , ST ABUT
TMTF.GLR DBINDX
JNTFGFH ttlHI LV,AHToFS,GX,GY,COL
TNTFT.FH FRSIZF
niMCMStriM ITCMP(4),lNDLX(2,41
LI* »1ARS(NGX-GX(n)
tr(NGX ,GT. GX(I1) t.0 TO 1M

IF*D » A
tSTART • 3
If (I I* ,FQ. 11 I3TAPT • A
I«nT»4-l1*
GO TO ?fl

1M ISTART > 1
IFNO • 2
IF (LIM .FfJ, n TCNO • 1
IROT«|. IM

20 CALL CLMFRS(I,TSTAR?,IENP>
CALL rnA3F(MAPTRF,F*SAR,ICMT,2)
TFORCt»1
TCNT»d
00 St» J«1, IHOT

00 3(* tC0L«l,4
<»TC0L*1
ITdCOL ,FQ. 4) K •!
ITFMP(IC0L1 • f:OL(K,I)

JH CO"iTTMUr
00 4P 1101.« 1,4

LOLdCOL.I) • !TFMP(Tr.ni)
4B CONTINiir
•jH COMTTNIJF

LFVCl » CUPLEV(I)
CALL SIT Tux (1,1 FVEI t*&X, NGY .1 FT TOP, iNOf X,IRUF,NONF)
IF (NOMC ,NFt ?) GO TO 7R

00 ft? IC0L»1,4
IF (Crn.(TCOL,D .^F. *M GO TO Afl

ioincoL,n «LFTTOP • tc"i-i
TP'JTBTPMF

(.All HFOSMO(I,l.f vrL,IMrFX,TPMT,K;Ol)
6tf CPNTTMHI

CAU TFALOC
/C IIHUR'i

F VO

210

PAGF

• CALL SFTRF (TRfE,KH|

kjoiw; F*TKY Sf TBF
wwn SAVE 03 16
M\W RET F.QU 0

IVIV2 TRTE fcUU ?
l"()B4 WMFRF rou 4

HU(J« PEFRSH f- uu 6
0!!?8 1PNT FQU R
(5111 WO OPP'1 SET OF StM 8,SAVE

(40141) 48CF
H0P8

LH 12,IPNT(1»0

util en 4MC I H IPNT,B(12)

HOICK 489E
P0H2

LH 9,TREt(151

00200 4899 LH 9,M(9)

.1024ft 4098 STH 9,UfTP*T)

0O28H C8PR
HK02

LMI IPNT,?(IPNT)

HII2Ct» 409F
0004

M 9,«MfRF(1S1

003*11 r.apn
HCJJM

LIT 11.4

0O34R 4BA9 loop 1 H 1H,C(9)

UH38H 4HAB SfH |(l.«l(IPMT)

MUCH (.888 LMI !PNT.2(IPMT)

(104*0 C899 1*1 9,2(91

11(1441) LBOl: SHI 11,1

U04BR 483H

np:54R
nV LOOP

HU4CU 4R9F
KM 06

LH 9,RFFRSHf1S)

OOSflH 4AQQ
HH3H .

IM 9,w(9)

00540 *l*9H STH 9,M(IPMT)

P05BU C888 Mi IPNT»?CI»MT)

RCSCH 4HSC
'4HPU

STH IPWT,G(1?1

BflSPI' ni8r 1 H ft,SAVE

0'44411 4AM AM 1 "5, HF T r 1 «S 1

1906811 CW HW lr>
1)0641) f.Nn

RF,9rFRSH,IPNT)

PICK ijP POINTER A00RE3S

PICK UP POINTER

r,n APORESS OF TREE

GET TRrr NUMBER

PUT TPTE IN BUFFER

POP BUFFER POINTER

Gf T ADORFSS OF WHERE NAMf

SET I OOP COUNTER

GFT 1ST WORD OF WHF»E WAKE

STOPF IT IN BUFFER

POP BUFFER POINTER

POP NAHf POINTER

OONF LOOPING

NO LOOP AGAIN

GTT ADORES OF PEFRFSH TYPE

r.TT Of FRESH TYPF

STORf TM BUFFER

POP BUFFFR POINTER

SfT HUFFFH POINTER IN RETURN PAR4MFTFRS

211

SUBROUTINE SFTINX(I#! VEL,NGX.NGY,LFTTOP,INDFX,IPNT,NONE)
CALL TOPl.M(I,LrVFLfNOX#NOV,LFTTnP)
CALL RlMOFXCI,LFTTOP,LEVEL.INDEX)
CALL ALLHCdNDEX, IP»»T,NONE)
UPTURN

212

P*GF I

HllflWR E.NTHY atTJTM
* CALL SETITh(lTYPE',N,CPLOR#NAME»IPNT)

(K)pia Rf T EUII P
H()0? TTYPF MU ?
IMIP4 N fUU 4
0HP6' COLOR r.au *
UHPH MAM£ mu R
t)(!<»A IPNT HU If
I'MflPiU SAVE 03 i?
W12PR r>^»ii SETITM RTM fl.SAvr

tfUBUR
UH24R 4B1E IH ltJPNTflS)

C«?IA
iM'PBK 48A1 L* IPNT,PCI) PICK Vf> BUFFER POINTER

HHPl:<

HH2CII tear in ITYPE,ITVPE(15)
r*t«H2

U03PR «rj? IH 3.HCITYPE) LOAD TYPE

PH34R CD3" SCML 3,12 PUT TYPf IN MICH ORDER BITS
npc»t

VHt38l< '84f I.H N,M(|«i) f.FT ADDRESS OF NUMBER OF POINTS
MPP4

HHJCD 484-1 IH N,l«(N) GET NUMBER OF POINTS

0f14*l> r.C<H' S^HL N,4 GET »ID OF BYTE ADDRESS
HUM

D044H 1*634 0*R 3,N MAKE ITE^ HEADER OF TYPE AND POINT COUNT
<1I!46R 4C1JA STH 3,H(TPNT) PUT IT IN PUFFER

(•(•Mil
H04AR f.RAA I HI TPNT,2fTPNT) POP BUFFER POINTER

Bt14fH 48M LH COIOR,CO|0RE15)

Ht)»)2IJ 4R6* IH COLOR,H(COLOR)
PPHH

0(1561! 4H6A STH CninH.CIfTpNT) PUT COLOR INTO HUTFFR
V'-**V

lir-fiAR CUAA LHI TPMT,2(IPNT) pnP BUFFFR P0INTFR

U'lfjEK r.P7" LHI 7,4 SET LOOP COUNTER
HH!14

HU6?R 4BB» I* NAME ,NAMF flfi) CF T AOORFS OF N»Mf
0(408

t'StbftP 405M I OOP I.H S,H(NAMri PICK HP NAME

UPfiAR 4M«,A S'H *>,H(IPNT1 STORE IN BUFFER
(* U [« M

iM'ffER CPM LHI IHNT,?(IPMT) Pnp BUFFER POINTER
d'1-»?

W72R r.AB.i LMT NAME,?fwAMF) POP NAME POINTER

H07BP rn/i. SH! 7,1 DONE LOOPING
r*t»1

(4fi7AH 4?vi RN7 LOOP r,o i nop jf NOT noNr

213

P*GF ?

nn/FM 14*1 sin iPNF,pi(t) s»vr POINTS IN RETURN P*H*MFTEB

t<ri«?r? nit«M t« PI,SAVE

0MR6P 4*f> »H 1%RFT(1S)
Pfflltj

l)f1»AI(t«3U*' Hr< IB
'JOBCP EMt>

214

ta

3UBR0U
COMMON
DIMF MS

INTF.GC
DATA 1
DATA X

!• OXCEN
:» /1,2
DO 1PI

cn«
COJTJM
CHR3TA
CURST A
CALL L

1 CUR
RETI.JRKI

fMO

TI
/

TO
R
R
X.
IE

ME SETM
STATUS/
N M3G(1
XCLNM,Y
OXCENM,
IY/1,2/
MM,YCEN
OYCENM,
,4,b,6.

SGCMSG)
CURSTA(lfi)

)
CEMMf XXT.., ,
OYCf.NM,OXXT

NT,YXTNT,XCURA,YCURA,XCURM,YCURM
IXXTNT,OYXTNT,OXCURA,OYCURA,OXCURM,OYCURM

. ^

•a
STACK) » CURST A(J)
UE
CX
CY
RT
ST

M,XXTMT,YXTMTrXCURA,YCUPArXCURM,YCURM,
OXXTNT,OYXTMT,OXCURA,OYCURA,OXCURM,OYCURM

7,6,9,10,Uti2,13,i4,i5,16/

CURA) * FLOAT(MSR(IX))
CURA) a FLOATfMSC(IY))
OMP(CtiRSTArXcURA)rCURSTA(YCliRA),
AfXCURM),CH«STA(YCURM))

215

SUBROUTINE SET8TA(lCHAR,LEN)
COMMON /COLORS/ HCD»YELLnwfGRFF-N,BLACK
COMMON /MENCON/ MENU,ONXC,PNRXC,DFEXC,OFFRXC,MENNME(2),

\ 37AliiS(?)»SYSTAT(2),SY3RE3(?)
?,STATY»RESYC,RLEFT

IK'TFGER HEP,YEUO*,PKEEN,HUCK
HFAL "EMNMF
CAIX CHAt*(SYSTAT,ICHAR,lFN,RLErr,3TATY,GREIN»l,lr<M

RETURN

216

3WRR0UTINF. STATCS(MSG)
COMMON /MMIJTT A/ ON,OFF,YFS,NO,UP,PASS

1 ,A!)TON,AUTOF,STATlC
COMMON /CURSTA/ MODE,XCFNM,YCENM,OXCrN,OYCFN,XFXTMT,YEXTNT
UOXXTNT,OYXTNT
?,XCURA»YCURA,UXCURA»OYCURA,XC»JRM,YCURMfOXCURM,OYCURM
TMTFGf R ON,OFF,YESrNO,UP»PASS
INTEGER AUTOM,AUTOFfSTATIt
MOPE » 3TATK
I'FTURM
F.NP

217

SUBROUTINE STATIN(NAME,TYPE,LENGTH,ST AT)
COMMON /DATA / WORl0(2),Z00MIN,Z0OM0T,MAPTRF
COMMON /STATUS/ CURSTAU6)
RFAl NAME
INTEGER TYPE
DJMF.NQION STATfH
DATA It,12,13,14,16/17,18,19,20,21/
00 \V J»l,16
CURSTACJ) «3TAT(J)

tU CONTINUE
W0PLD(i)«8TAT(Il)
fcOR|_D(2)«STAT(I2)
Z0nhTUBSTAT(I3)
7nnMnr»RTAT(I4)
MAPTRE«STAT(I6)
RETURN
EMO

218

SUBROUTINE TnPlPT(I»LEVEL,NGX,NGY,LFTTnP)
COMMON /OATSTA/ CURLEV(10).AUTOFSC10)»GX(!0)»GV(10),COL(4,10)
COMMON /DATBAS/ PRLKlXt10)#NUMLEVf10),INMENUC101),ZM0THR<4,10),

lZMTNTHf4,lPn,OM,10)fNt)MXM,10),NUMY(4,10), IFILF(4,10),
? DBINDXU, J0),lTYPEC4rl0)#ICOl.ORf4»10)»NUMDB

INTEGER CURU V.AtlTOfS,GX,GY,COL
INTEGER 08IN0X
LFTTOP « (fNGY + i) * WijMXfLEVEL, I)) • (NGX-1)
RETURN
END

r>»T»»x» •» « A n

219

SUPffH.ITJMF TRANTP(MSG)
COHMPN /PAT* / wrjRLO(?),ZOOMlKI,ZOOMOT,MAPTRE
CONHQ!* /STATUS/ CU»STA{16)
DfHtWSJrtN MSGC1.)
iMTintp r.«ROR
lNTC<3fZ« XCfN*,YCFN*>XXTNT,YXTNT,XCURA,YCURA,XCURM,YCURM
Itm.c.Fj? nxrEN^fovcf.NM,oxxT^T»OvxTNTfnxi;URA,OYCURA,nxciiPH,nycuRM
DATA XfF>!M,YCEKM,XXTMT,YXTNT,XCURA,YCURA,XCURM,YCURM,

1 ny(FH.i,QYCf:H^,OXXTNT,aYXTNT»OXC»iRA,OYCURA,nycURM,OYCURM
? /I, 2 r 3, 4,5,6, 7 »*>M6»tt» «?»13,14,15,16/
CALL Sf'TMSG(MSR)
DISTX s ?5ft,-CUR8TA(XfJ.IRA)
DIRTY a 840. -CURSTA(YCURA)
CALL TRANS(MAPTRF, WORLD ,DlSTX,DISTY,0,1)
CljPSTA(Xr.F.NM) « CU»STA(XCURM)
cupr.TArvctwM) = CURSTA(VCURM)

CALL SFNDfBHCURSTA ,63, 50,CURST A , 64,CRRCIR)
IFfLWKCP ,Nf. 0)CALL ERMSG (11HT»ANTP SEND,11,FRROPl
RfcTURN
FND

220

JH

SllflR
COMM

1 ,AU
COM

1 A'lF

COMM

1 7MIN
? OH I

COMM
1 r,T
?,STA

INTF
IME
I ME
TMJf
IMF
PPAL
DTMF.
IF (
CALL
CAI.I
CALL
CALL
CALL
MtTU
Fwn

OUT
OM
TON
ON
RUT
AP(
0^
nr:
TM(
ND*
Or.'
ATU
TY,
GC"
GLf"
Gin
GEP
GER
ME

MS I
IKK
DH
NA
OP
CH
0!

RN

INE WR
/MMI.ITI
,.\UTOF
/TPFt'S
,ZnTB'J

/OATST
/r>ATRA
4,10),
(4,1^)
/MfcNCO
sm,s
RFSYC,

DN,O
AUTTM
7TMPU
CURLF
OKIMn

NMMF.
f)M CMA
E NIK II
POSf If
ME(PPC
CMTfCN
A R (C N A
5PtY(M

TCHR(I»X.St'CNMF,ICHAR,ICOLR)
A/ ON,QFF,VFSfNO,UP,PASS
,STATIC
/ MAPTKF,MFNTWF,WORLOm,ZINBUT,TRNBUT,SLCTRT,
T,MFNaUTrA0NBUTf3TABUT

A/ CURLEV(l»)fAUTOFS(10>fGXC10)#GYCHn#COLC4#10>
S/ PRFHX<10),NlJMlEV(10J,I*MFNU(llO#ZMnTHR(4,1.0)»
DC4,10),i<iUMXC4.1Pn,NUMY(4,10),IFILE(4,lPn,
,ITYPE(4,l*),ICOLOR(4,10),N(JMr>B
N/ Mf:N»tJ,nMXC,ONRXC,nFFXC»OFFRXC.MCNNMF(?),
YSTAT(2),SYSRES(2)
Rl.l FT
FF,YE8»N0,UP»PASS
,AHTOFfSTATIC
T,TPNBUT»SLCTRT , AUFRUT r ZOTBUT, AONRLJT , STABUT
V,AUT0FS*GX»GY»C0l
X

^MC(?)
I .TO. MO) GO TO 10
rY)
:FIxm»3ECMME,CNAME)
4AMF,0.»O.»S!1.»479.,0)
^F,ICHARf?,X,Y,ICO|.R ,!,1,W)
4ENTPE,STATUS»PAS3fM.»P,f51t,,479tf0.»P.#0.#CNAME,-l)

221

SUHWOHTINF ZMINTP(MSG)
COMMON /DATA / *ORl D(2),Z00MINf/POMOTfMAPTRF.
OWNS JON MSG(i)
r.Aii /nHTnP(Mv«5R,7nnMjN)
Rftt'PN
END

222

SUBROUTINE ZHOUTPfMSG)
rOMf»ON /DATA / WORl D(?)rZOOMIN,ZnOMOT,MAPTRF"
DI*F:NSTON MSG(I)
CAM 7.nMTOP(H8nr70OH0T)
RETURN
END

223

224

SUB
co*
COM
TNT
INT
JNT
niN
DAT

1 OX
? /
CAL
r A r.
CAL

CUR
CUP
CAI.

1
CAL
IF r
RF.T
END

POUT
MOM
f*,CN

rrrn
F.(LT
f. hSJ
A XL
CF^M

I 8*
T r P
I. 91
)
S T A (
ftT> f
L NE
CUP

I St
F R"G
URN

IMF Z0MTDP(M3r,
/STATUS/ CURST
/fiATA / WORLD?
XCENM,YCENM»X
nXCENMfOYCF-NM
F RRQR

0* MSG(l)
EMM,YCENM,XXTN
,OYCENM,OXXTNT
3,«,s,e,7,s,9,
TMSG(MSR)
* 1./FAC
ALE(MAPTRF,FACTnR,CURSTA(XCURA),CURSTA(YCURA), WORLD

,FAC)
A(16)
2)iLZ0nMiN,Z00H0TfMAPTRE
XTNT,YXTNT,XCIIRArYCURA,XCURM,YCURH
fnxXTNT,nYXTNTfnXCURArOYCURA,OXCURM,nYCHRM

IT,YXTWT,XCURA»YCURA#XCURH»YCUR*»
•»OYXTNT#OXCURA,OYCURA.tOXCURM#OYCURH
10,11,1?,13,H,15,16/

XXTNT1 BCURSTA
YXTNT) m CU"S
WLE.N(FAC, CURST
STAfXCCNH)rCUR
Mr. (RHflUPSTA
R .Mf. fl) CALL

COXXTMT) *FAC
TA(OYXTNTT *FAC
A(OXCFNM)rcURSTA(OYCr.NM),
STA(YCfMM))

,r;3,5M, CURST A. 64, ERROR)
FIRMSGf I1HZOHTOP SLMD ,11,ERROR)

225

